Energy, Environmental & Chemical Engineering

The Department of Energy, Environmental & Chemical Engineering (EECE) provides integrated and multidisciplinary programs of scientific education in cutting-edge areas, including the PhD in Energy, Environmental & Chemical Engineering. Research and educational activities of the department are organized into four clusters: aerosol science & engineering; engineered aquatic processes; multiscale engineering; metabolic engineering & systems biology. These overlapping clusters address education and research in four thematic areas: energy; environmental engineering science; advanced materials; and sustainable technology for public health and international development. In addition to the core faculty in the department, faculty in the schools of Medicine, Arts & Sciences, Business, Law, and Social Work collaborate to provide students with a holistic education and to address topical problems of interest.

The department is a key participant in the university’s Energy, Environment & Sustainability (http://sustainability.wustl.edu) initiative and supports both the International Center for Advanced Renewable Energy and Sustainability (I-CARES (http://icares.wustl.edu)) and the McDonnell Academy Global Energy and Environment Partnership (MAGEEP (http://mageep.wustl.edu)). Major externally funded research centers in the department include the Consortium for Clean Coal Utilization (http://cleancoal.wustl.edu), the National Nanotechnology Infrastructure Node (http://nano.wustl.edu), and the Solar Energy Research Institute for India and the United States (SERIUIS (http://www.serius.org)).

Contact: Rose Baxter
Email: rbaxter@wustl.edu
Website: https://eece.wustl.edu/graduate/programs

Endowed Professors

Richard L. Axelbaum (https://engineering.wustl.edu/Profiles/Pages/Richard-Axelbaum.aspx)
Stifel and Quinette Jens Professor
PhD, University of California, Davis
Combustion, advanced energy systems, clean coal, aerosols, nanoparticle synthesis, rechargeable battery materials, thermal science

Milorad P. Dudukovic (https://engineering.wustl.edu/Profiles/Pages/Milorad-Dudukovic.aspx)
Laura and William Jens Professor
PhD, Illinois Institute of Technology
Chemical reaction engineering, multiphase reactors, visualization of multiphase flows, tracer methods, environmentally benign processing

Daniel E. Giammar (https://engineering.wustl.edu/Profiles/Pages/Daniel-Giammar.aspx)
Walter E. Browne Professor of Environmental Engineering
PhD, California Institute of Technology
Aquatic chemistry, environmental engineering, water quality, water treatment

Vijay Ramani (https://eece.wustl.edu/faculty/Pages/faculty.aspx?bio=108)
Roma B. and Raymond H. Witcoff Distinguished University Professor of Environment Engineering
PhD, University of Connecticut, Storrs
Electrochemical engineering, energy conversion

Professors

Young-Shin Jun (https://engineering.wustl.edu/Profiles/Pages/Young-Shin-Jun.aspx)
Director of Graduate Studies
PhD, Harvard University
Aquatic processes, molecular issues in chemical kinetics, environmental chemistry, surface/physical chemistry, environmental engineering, biogeochemistry, nanotechnology

Palghat A. Ramachandran (https://engineering.wustl.edu/Profiles/Pages/Palghat-Ramachandran.aspx)
PhD, University of Bombay
Chemical reaction engineering, applied mathematics, process modeling, waste minimization, environmentally benign processing

Associate Professors

John Fortner (https://engineering.wustl.edu/Profiles/Pages/John-Fortner.aspx)
InCEES Career Development Associate Professor
PhD, Rice University
Environmental engineering, aquatic processes, water treatment, remediation, and environmental implications and applications of nanomaterials
John T. Gleaves (https://engineering.wustl.edu/Profiles/Pages/John-Gleaves.aspx)
PhD, University of Illinois
Heterogeneous catalysis, particle chemistry

Yinjie Tang (https://engineering.wustl.edu/Profiles/Pages/Yinjie-Tang.aspx)
Francis Ahmann Career Development Associate Professor and
Director of Undergraduate Studies
PhD, University of Washington, Seattle
Metabolic engineering, bioremediation

Jay R. Turner (https://engineering.wustl.edu/Profiles/Pages/Jay-Turner.aspx)
Vice Dean for Education
DSc, Washington University
Air quality planning and management; aerosol science and
engineering, green engineering

Brent Williams (https://engineering.wustl.edu/Profiles/Pages/Brent-Williams.aspx)
Raymond R. Tucker Distinguished InCEES Career Development
Associate Professor
PhD, University of California, Berkeley
Aerosols, global climate issues, atmospheric sciences

Fuzhong Zhang (https://engineering.wustl.edu/Profiles/Pages/Fuzhong-Zhang.aspx)
PhD, University of Toronto
Metabolic engineering, protein engineering, synthetic and
chemical biology

Assistant Professors

Peng Bai (https://engineering.wustl.edu/Profiles/Pages/Peng-Bai.aspx)
PhD, Tsinghua University
Energy storage systems

Rajan Chakrabarty (https://engineering.wustl.edu/Profiles/Pages/Rajan-Chakrabarty.aspx)
PhD, University of Nevada, Reno
Characterizing the radiative properties of carbonaceous aerosols
in the atmosphere; and researching gas phase aggregation of
aerosols in cluster-dense conditions

Marcus Foston (https://engineering.wustl.edu/Profiles/Pages/Marcus-Foston.aspx)
PhD, Georgia Institute of Technology
Utilization of biomass resources for fuel and chemical
production, renewable synthetic polymers

Tae Seok Moon (https://engineering.wustl.edu/Profiles/Pages/Tae-Seok-Moon.aspx)
PhD, Massachusetts Institute of Technology
Metabolic engineering and synthetic biology

Kimberly M. Parker (https://engineering.wustl.edu/Profiles/Pages/Kimberly-Parker.aspx)
PhD, Stanford University
Investigation of environmental organic chemistry in natural and
engineered systems

Elijah Thimsen (https://engineering.wustl.edu/Profiles/Pages/Elijah-Thimsen.aspx)
PhD, Washington University
Gas-phase synthesis of inorganic nanomaterials for energy
applications, and novel plasma synthesis approaches

Research Associate Professor

Tianxiang Li
PhD, University of Kentucky
Combustion and applications in energy, pollutant control, biofuel
synthesis, flame synthesis of nanomaterials

Research Assistant Professors

Su Huang
PhD, University of Washington, Seattle
Photovoltaic materials and devices, nonlinear optical materials
for photonic devices

Benjamin Kumfer
DSc, Washington University
Advanced coal technologies, biomass combustion, aerosol
processes and health effects of combustion-generated particles

Lecturers

Janie Brennan
PhD, Purdue University
Biomaterials, synthetic biology, engineering education

Trent Silbaugh
PhD, University of Washington
Chemical engineering

Joint Faculty

Himadri Pakrasi (http://wubio.wustl.edu/pakrasi)
PhD, University of Missouri-Columbia
Systems biology, photosynthesis, metal homeostasis

Nathan Ravi (http://ophthalmology.wustl.edu/Faculty/Ravi_N.aspx)
PhD, Virginia Polytechnic Institute
Cataract, ocular biomaterials

Adjunct Faculty

Robert Heider
MME, Washington University
Process control and process design
Timothy Michels
MA, Washington University
Energy economics, building construction and equipment sciences

Gary Moore
MS, Missouri University of Science and Technology
Environmental management

Nicholas J. Nissing
BS, Washington University
Product development and process design

Research Associate

Raymond Ehrhard
BS, Missouri University of Science and Technology
Water and wastewater treatment technologies, process energy management

Senior Professor

Rudolf B. Husar
PhD, University of Minnesota
Environmental informatics, aerosol science and engineering

Degree Requirements

Doctor of Philosophy (PhD) in Energy, Environmental & Chemical Engineering (EECE)

The doctoral degree requires a total of 72 credits beyond the bachelor’s degree. Of these, a minimum of 36 must be graduate courses and a minimum of 30 must be doctoral thesis research units. To be admitted to candidacy, students must have completed at least 18 credits at Washington University, have an overall GPA equal to or greater than 3.25, and pass the qualifying examination. All students are required to enroll in the department seminar every semester to receive passing grades. The first year students must complete the core curriculum, perform two research rotations, and find a permanent research adviser. Then, within 18 months after the qualifying exam (generally in their third year), students should defend their thesis proposal.

After the successful proposal defense, students should provide the research updates through annual meetings or reports with their thesis committee until their graduation. While conducting doctoral research, students should perform professionally in a research lab including compliance with safety and regulatory requirements for their research project. During the doctoral program, students must satisfy their fundamental and advanced teaching requirements by participating in mentored teaching experiences in the department for two or three semesters, by attending professional development workshops from the Teaching Center, and by presenting at least two formal presentations at the local level or at a national or international conference. Upon completion of the thesis, students must present the thesis in a public forum and successfully defend the thesis before their thesis committee.

For more detailed guidelines, please refer to the EECE doctoral studies handbook available on the EECE Graduate Degree Programs (https://eece.wustl.edu/graduate/programs/Pages/PhD-Energy-Environmental-Chemical-Eng.aspx) webpage.