Physics

The Department of Physics offers AM and PhD programs in Physics. Research covers a wide area of experimental and theoretical physics, and benefits from close contacts with nuclear and inorganic chemists in the chemistry department, planetary scientists in the earth and planetary sciences department, applied scientists in the School of Engineering & Applied Science, and biological scientists both on the Danforth Campus and at the School of Medicine. The department is a major participant in the McDonnell Center for the Space Sciences and the Institute of Materials Science & Engineering.

Experimental research areas include:

- astrophysics (observations of cosmic rays, gamma rays, X-rays, dark matter detection, high-precision tests of gravity)
- space sciences (laboratory analysis of meteorites, stardust, interplanetary dust particles)
- condensed matter and materials physics (graphene and other two-dimensional atomic crystals, quantum information and atomic physics with condensed matter devices, nanostructures, metallic glasses, magnetism and superconductivity, high-pressure physics, nuclear magnetic resonance)
- biological and biomedical physics (biophysics of the brain, hyperpolarized magnetic resonance imaging, ultrasound, echocardiography).

Theoretical research areas include:

- biophysics (nonequilibrium dynamics in biological cells)
- condensed matter physics (strongly correlated electron systems, topological phases, excited states of many-electron systems, density functional theory)
- elementary particle physics (astroparticle physics, dark matter, theoretical cosmology, strong interactions, non-Hermitian Hamiltonians, quark matter)
- nuclear theory (nuclear matter, correlations in nuclei).

Students are usually admitted to the PhD program rather than to the AM. They spend their first two years taking graduate courses, finding a dissertation adviser, and starting research. During that time they receive a stipend and complete two semesters of mentored teaching experiences. After achieving the required course grades and passing an oral examination at the end of their second year, students are normally paid from research funds while working on their research and writing a dissertation. The PhD program typically takes between five and six years to complete.

Website: http://physics.wustl.edu

Faculty

Chair
Mark Alford (http://physics.wustl.edu/people/alford_mark-g)
Professor
PhD, Harvard University
Nuclear/particle physics

Endowed Professors
Carl M. Bender (http://physics.wustl.edu/people/bender_carl)
Wilfred R. and Ann Lee Konneker Professor of Physics
PhD, Harvard University
Elementary particles

Ramanath Cowsik (http://www.physics.wustl.edu/people/cowsik_ramanath)
James S. McDonnell Professor of Space Sciences
PhD, University of Bombay
Astrophysics and space sciences

Kenneth F. Kelton (http://www.physics.wustl.edu/people/kelton_kenneth-f)
Arthur Holly Compton Professor of Physics
PhD, Harvard University
Condensed matter and materials physics

James G. Miller (http://www.physics.wustl.edu/people/miller_james-g)
Albert Gordon Hill Professor of Physics
PhD, Washington University
Physics applications in biology and medicine

Professors
James H. Buckley (http://physics.wustl.edu/people/buckley_james-h)
PhD, University of Chicago
Astrophysics and space sciences

Anders E. Carlsson (http://physics.wustl.edu/people/carlsson_anders-e)
PhD, Harvard University
Biophysics

Mark S. Conradi (http://www.physics.wustl.edu/people/conradi_mark-s)
PhD, Washington University
Condensed matter and materials physics

Willem H. Dickhoff (http://www.physics.wustl.edu/people/dickhoff_willem-h)
PhD, Free University, Amsterdam
Many-body theory

Martin H. Israel (http://www.physics.wustl.edu/people/israel_martin-h)
PhD, California Institute of Technology
Astrophysics and space sciences
Jonathan I. Katz (http://www.physics.wustl.edu/people/katz_jonathan-i)
PhD, Cornell University
Astrophysics

Henric Krawczynski (http://www.physics.wustl.edu/people/krawczynski_henric)
PhD, University of Hamburg
Astrophysics and space sciences

Michael C. Ogilvie (http://www.physics.wustl.edu/people/ogilvie_michael-c)
PhD, Brown University
Elementary particles

James S. Schilling (http://www.physics.wustl.edu/people/schilling_james-s)
PhD, University of Wisconsin-Madison
Condensed matter and materials physics

Ralf Wessel (http://www.physics.wustl.edu/people/wessel_ralf)
PhD, University of Cambridge
Physics applications in biology and medicine

Joint Professors

Shankar M.L. Sastry (http://www.physics.wustl.edu/people/sastry_shankar)
PhD, University of Toronto
(Mechanical Engineering)

Lee G. Sobotka (http://www.physics.wustl.edu/people/sobotka_lee-g)
PhD, University of California, Berkeley
(Chemistry)

Associate Professors

Francesc Ferrer (http://www.physics.wustl.edu/people/ferrer_francesc)
PhD, Universitat Autònoma de Barcelona
Astrophysics and space sciences

Zohar Nussinov (http://www.physics.wustl.edu/people/nussinov_zohar)
PhD, University of California, Los Angeles
Condensed matter and materials physics

Alexander Seidel (http://www.physics.wustl.edu/people/seidel_alexander)
PhD, Massachusetts Institute of Technology
Condensed matter and materials physics

Li Yang (http://www.physics.wustl.edu/people/yang_li)
PhD, Georgia Institute of Technology
Condensed matter and materials science

Assistant Professors

Bhupal Dev (http://physics.wustl.edu/people/dev_bhupal)
PhD, University of Maryland, College Park
Elementary particle physics, particle astrophysics, cosmology and theoretical physics

Erik Henriksen (http://physics.wustl.edu/people/henriksen_ek)
PhD, Columbia University
Condensed matter and materials science

Shankar Mukherji (http://physics.wustl.edu/people/mukherji_shankar)
PhD, Massachusetts Institute of Technology/Harvard Medical School
Systems cell biology

Kater Murch (http://physics.wustl.edu/people/murch_kater)
PhD, University of California, Berkeley
Quantum information and materials

Ryan Ogliore (http://physics.wustl.edu/people/ogliore_ryan)
PhD, California Institute of Technology
Cosmochemistry, planetary science

Lecturers

Vikram Duvvuri (http://physics.wustl.edu/people/duvvuri_vikram)
PhD, University of Chicago

Mairin Hynes (http://physics.wustl.edu/people/hynes_kathryn-mairin)
PhD, Washington University

Research Professors

Sachiko Amari (http://www.physics.wustl.edu/people/amari_sachiko)
PhD, Kobe University

Robert Binns (http://physics.wustl.edu/people/binns_w-robert)
PhD, Colorado State University

Christine Floss (http://www.physics.wustl.edu/people/floss_christine)
PhD, Washington University

Alexander Meshik (http://www.physics.wustl.edu/people/meshik_alex)
PhD, Vernadsky Institute of Cosmochemistry

Research Assistant Professors

Viatcheslav Bugaev (http://www.physics.wustl.edu/people/bugaev_viatcheslav)
PhD, Altai State University

Fabian Kislat (http://physics.wustl.edu/people/kislat_fabian)
PhD, Humboldt University
Degree Requirements

PhD and AM in Physics

This document summarizes the physics department's degree requirements. These are in addition to the requirements established by the Graduate School. For more information regarding requirements for doctoral degrees (http://bulletin.wustl.edu/grad/gsas/phd/academic) or master's degrees (http://bulletin.wustl.edu/grad/gsas/masters/academic) in the Graduate School, please visit the appropriate sections of this Bulletin.

Students are normally accepted for graduate work toward the PhD, and students are occasionally accepted to work toward the AM. For more information about degree requirements (http://physics.wustl.edu/graduate/about-the-program/handbook/degree-requirements), please visit the physics department website.

Requirements for AM

1. 36 semester hours of course credits, of which at least 30 semester hours must be in classroom or seminar courses at the 400 level or higher.
2. The student must get permission from their adviser and the director of graduate studies to take courses outside the physics department.
3. The student must maintain an overall grade average of B (GPA 3.0) or better.
4. Among the student's courses there must be at least 12 semester-hours of the "core" courses required for PhD qualification (detailed below), passed with an average grade of B (GPA 3.0) or better.

Requirements for PhD

1. Outline of requirements
 • Complete 36 units of academic credit (detailed below), maintaining an average grade of at least B (GPA 3.0).
 • Pass the PhD qualification procedure. This must be done before a student can formally join a research group, and is normally completed before the start of the third year.
 • Teaching requirements.
 • Write a thesis ("doctoral dissertation").
 • Pass an oral dissertation defense examination.

2. 36 unit academic credit course requirement

Courses that count toward academic credit:
• Any regular 400- or 500-level lecture courses in the physics department, including Physics 597/Physics 598 Supervised Teaching of Physics and Physics 582 Research Seminar
• Courses outside the physics department, if approved by the student's adviser and the director of graduate studies
• Reading courses, for which students should register for Physics 589/Physics 590 Selected Topics in Physics
• Supervised research, for which students should register for Physics 593/Physics 594 Introduction to Methods in Physics. This can be used for a maximum of 6 units of academic credit.

Students can take up to four 400-level physics classes toward their academic credit without special permission from the graduate studies committee. However, they should discuss the merits of doing so with their adviser.

3. PhD qualification: course requirements
For qualification, students must pass six core 500-level physics courses. In those courses the student must maintain an average of a B (GPA 3.0) with no more than one grade lower than B-. A given core course may be taken only once.

Must take:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 501</td>
<td>Theoretical Physics</td>
<td>3</td>
</tr>
<tr>
<td>Physics 505</td>
<td>Classical Electrodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>Physics 523</td>
<td>Quantum Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>Physics 529</td>
<td>Statistical Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

plus at least two of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 502</td>
<td>Methods of Theoretical Physics II</td>
<td>3</td>
</tr>
<tr>
<td>Physics 506</td>
<td>Classical Electrodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>Physics 507</td>
<td>Classical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>or Physics 509</td>
<td>Nonlinear Dynamics</td>
<td></td>
</tr>
<tr>
<td>Physics 524</td>
<td>Quantum Mechanics II</td>
<td>3</td>
</tr>
</tbody>
</table>

These requirements can be modified or waived for students with previous graduate experience, e.g., a master's degree in physics.

4. PhD qualification: oral examination requirement
After completing courses, the student must give a presentation to a committee of three physics faculty members (the prospective research adviser and two others), to qualify for admittance to the PhD program. A written summary is also required.

5. Teaching requirements
These requirements must be completed before the student submits their doctoral dissertation to the Graduate School.

a. Take L31 Physics 597
Graduate students are required to take Physics 597 Supervised Teaching of Physics prior to serving as an assistant in instruction. Students typically take Physics 597 in their first fall semester.

b. At least two semesters of mentored teaching experiences
c. Four hours of oral presentations
Graduate students must give a total of 4 hours of "specialized oral presentation." For example, teaching a class (e.g., when substituting for a professor); giving seminars, such as the weekly graduate seminar; or giving oral presentations at conferences, journal clubs, etc.

6. For dissertation requirements, including the oral defense of the dissertation: