Department of Cell Biology and Physiology

Cell biology is one of the primary disciplines in medical research, influencing all areas of basic and clinical investigation. The future holds great opportunities in cell biology research due to inventories of the genes and proteins from which cells are built, new experimental techniques and various model organisms. Further discoveries about the cell biology of human genes will continue to translate into therapeutics. Also on the horizon is a better understanding of how proteins and sets of proteins (e.g., macromolecular complexes) are assembled and integrated to produce function.

The Department of Cell Biology and Physiology (http://cellbiology.wustl.edu) is ranked among the top 10 cell biology departments in the country, and the research carried out by its faculty covers a broad range of fields within cellular physiology and molecular cell biology. A unifying theme is the study of fundamental processes and their regulation. These cellular processes include genome maintenance, apoptosis, cell cycle control, dynamic cell motility, angiogenesis, signal transduction and membrane trafficking, presynaptic processes, prion protein misfolding, RNA metabolism, and the structure and function of ion channels. The department's research activities provide a foundation for studies in cancer biology, immunobiology, developmental biology, neurobiology and vascular biology. Its faculty use model organisms as well as human stem cells and a variety of techniques such as deep-etch electron and confocal microscopy to carry out their research. Cellular imaging is a particular strength of the department.

The Department of Cell Biology and Physiology oversees the course Physiology (CellBio 501), which is designed to provide first-year medical students with a foundation for their further study of clinical and applied physiology. The Molecular Cell Biology course for first-year graduate students conveys an understanding of fundamental cell biology research strategies and principles. In addition, advanced courses open to medical and graduate students provide for more detailed study of specific areas of cell biology, physiology and cellular biophysics.

Website: http://cellbiology.wustl.edu

Degrees & Requirements

More information about Department of Cell Biology and Physiology degrees and requirements (http://bulletin.wustl.edu/grad/gsas/dbbs) can be found in the Graduate School Bulletin.

Research

M75 CellBio 900
Cross-listed with L41 Biol 590

Kendall J. Blumer, PhD
506 McDonnell Sciences Building
Phone: 314-362-1668
Signaling mechanisms in cardiovascular and neurological disorders.

Sergej Djuranovic, PhD
514 McDonnell Sciences Building
Phone: 314-362-9706
Molecular mechanisms of translational control; cellular processes regulated by changes in RNA metabolism.

James E. Huettner, PhD
4929 South Building
Phone: 314-362-6628
Excitatory amino acid receptors and synaptic transmission in the central nervous system; neural differentiation of embryonic stem cells.

Silvia Jansen, PhD
4900 South Building
Phone: 314-273-1853
This lab's focus is on elucidating the molecular mechanisms that regulate the architecture, dimensions and dynamics of actin filament networks and then tuning them to support essential cellular functions that range from cell migration and cytokinesis to neurogenesis.

David J. Kast, PhD
4900 South Building
Phone: 314-273-1852
The long-term goal of this lab's research is to understand the fundamental cellular and molecular mechanisms that drive the biogenesis and dynamics of intracellular membrane compartments, including the endocytic vesicles, the endoplasmic reticulum, the Golgi apparatus and the mitochondria.

Vitaly Klyachko, PhD
9610 BJC Institute of Health
Phone: 314-362-5517
Mechanisms and regulation of neurotransmitter release at individual synapses; functional roles of presynaptic processes in synaptic plasticity and information processing.
Robert P. Mechan, PhD
4606 Cancer Research Building
Phone: 314-362-2254
This lab strives to understand the complex process of extracellular matrix assembly and organization, including studying the intracellular pathways used to transport matrix components to the cell surface and identifying helper or accessory proteins that facilitate trafficking and matrix assembly. We also study cell-matrix interactions in development and cellular mechanisms associated with connective tissue remodeling in vascular disease and heritable diseases of the connective tissues.

Colin G. Nichols, PhD
9611 BJC Institute of Health
Phone: 314-362-6630
Ion channel biology; multiple levels of analysis from the molecular basis of channel function to in vivo physiology and disease.

David W. Piston, PhD
4912 South Building
Phone: 314-362-9121
The intracellular and intercellular dynamics of cells within the islets of Langerhans play a key role in the regulation of blood glucose levels. The islets are made up of different cell types, but very little is known about the interplay between the different cell types and how this affects their secretion of various hormones. The islets' a-cells secrete insulin in response to increased blood sugar and also in response to neurotransmitters and hormones. Glucagon also plays a key role in blood glucose homeostasis, and it is secreted by the islets' a-cells. High glucose levels inhibit glucagon secretion from a-cells within the islets but not from dispersed a-cells, and the mechanism underlying this phenomenon has not been defined. We use quantitative live cell microscopy to measure single-cell parameters within intact islets held within microfluidic devices in order to expose them to spatially heterogeneous levels of various stimuli. The resulting data are fit using mathematical models of islet functional dynamics, which we are continually modifying to better fit the observed islet physiology.

Amber N. Stratman, PhD
416 McDonnell Sciences Building
Phone: 314-273-7928
Mechanisms regulating blood vessel formation, stabilization, and blood flow sensing during development and disease.

Sheila A. Stewart, PhD
7610 BJC Institute of Health
Phone: 314-362-7437
Delineation of the molecular mechanisms by which aged stromal cells contribute to tumorigenesis and the molecular mechanisms that ensure high fidelity telomere replication and genomic stability.

Heather L. True-Krob, PhD
413 McDonnell Sciences Building
Phone: 314-362-3934
Biological consequences of yeast prions, in both their capacity to function as novel epigenetic elements and their utility to serve as a tractable model for the analysis of protein misfolding and aggregation that occurs in several neurodegenerative disorders.

Zhongsheng You, PhD
514 McDonnell Sciences Building
Phone: 314-362-9893
Studies of the cellular responses to DNA damage and their cancer relevance, focusing on the functional interplays between the DNA damage checkpoint, DNA repair and chromatin structure.

Peng Yuan, PhD
9608 BJC Institute of Health
Phone: 314-747-3793
The focus of this lab is on the structure and function of ion channels and transporters, which play essential roles in human physiology and disease. How do channels and transporters recognize their specific substrate ions? How do they respond to various stimuli, including chemical ligand, temperature, membrane voltage and mechanical force? How do they interact with the lipid membrane where they reside? To answer these fundamental questions, we use multidisciplinary approaches, including X-ray crystallography, biochemistry, biophysics and electrophysiology. Dysfunction of these membrane proteins could lead to a variety of diseases, such as asthma, hypertension, cancer, heart failure, diabetes, chronic pain and many more. The long-term goal is to provide a detailed mechanistic understanding of ion channels and transporters, which will offer novel strategies for drug development and better treatment of diseases.

Faculty

Department Head

David W. Piston, PhD
Visit our website for more information about our faculty (http://www.cellbiology.wustl.edu/faculty) and their appointments.

B
Kendall Jay Blumer, PHD
Professor of Cell Biology and Physiology (primary appointment)
BA Rice University 1977
PHD Duke University 1986

Thomas J Broekelmann, MS
Instructor in Cell Biology and Physiology (primary appointment)
BA University of MO St Louis 1977
MS University of MO St Louis 1982

D
Panyue Deng, MD, PHD, MS
Assistant Professor of Cell Biology and Physiology (primary appointment)
MD Hunan Medical University 1995
PHD CENTRAL SOUTH UNIVERSITY 2004
MS CENTRAL SOUTH UNIVERSITY 2001

Zengqin Deng, PHD
Instructor in Cell Biology and Physiology (primary appointment)
PHD China Agriculture University 2014

Lai Kuan Dionne, PHD
Instructor in Cell Biology and Physiology (primary appointment)
PHD University of Colorado 2010 2010

Sergej Djuranovic, PHD
Associate Professor of Cell Biology and Physiology (primary appointment)
PHD University of Tubingen 2007

G
Denis Goldfarb
Assistant Professor of Cell Biology and Physiology (primary appointment)
Assistant Professor of Medicine

Subhadr C Gunawardana, PHD, MS
Associate Professor of Cell Biology and Physiology (primary appointment)
PHD Cornell University 2002
MS Iowa State University 1995

H
Phyllis I Hanson, MD, PHD
Adjunct Professor of Cell Biology and Physiology (primary appointment)
MD Stanford University 1993
PHD Stanford University 1993
BA Yale University 1985

James E Huettner, PHD
Professor of Cell Biology and Physiology (primary appointment)

Professor of Biomedical Engineering
BA Indiana University 1981
PHD Harvard University 1987
BS Indiana University 1980

J
Silvia Jansen, PHD, MS
Assistant Professor of Cell Biology and Physiology (primary appointment)
PHD Katholieke Universiteit 2007
MS Katholieke Universiteit 2003

K
David John Edward Kast, MS, PHD
Assistant Professor of Cell Biology and Physiology (primary appointment)
BS University of Minnesota 2000
MS University of Minnesota 2004
PHD University of Minnesota 2018

Vitaly A Klyachko, MS, PHD
Professor of Cell Biology and Physiology (primary appointment)
Professor of Biomedical Engineering
Professor of Neuroscience
MS Moscow State University 1998
BS Moscow State University 1997
PHD Univ of Wisconsin Madison 2002

L
Sun Joo Lee, PHD, MS
Instructor in Cell Biology and Physiology (primary appointment)
BS Handong Global University 2000
PHD Washington Univ in St. Louis 2010
MS Kwang-Ju Inst. Of Sci & Tech 2002

M
Michael Benjamin Major
Professor of Cell Biology and Physiology (primary appointment)

Grigory Maksaev, MS, PHD
Instructor in Cell Biology and Physiology (primary appointment)
MS Moscow Inst of Physics & Techn 1998
PHD Moscow State University 2002

Robert Paul Mecham, PHD
Alumni Endowed Professor of Cell Biology and Physiology (primary appointment)
Professor of Biomedical Engineering
Professor of Medicine
Professor of Pediatrics
PHD Boston University 1977
BS University of Utah 1973

Robert W Mercer, PHD
Professor of Cell Biology and Physiology (primary appointment)
BA San Jose State University 1974
T
Heather L. True, PHD, MS
Professor of Cell Biology and Physiology (primary appointment)
BS Univ of Wisconsin Madison 1992
PHD University of Illinois 1998
MS University of Illinois 1995

W
Shizhen Wang, PHD
Adjunct Instructor in Cell Biology and Physiology (primary appointment)
PHD Tsinghua University, China 2007

Y
Zhongsheng You, PHD, MS
Associate Professor of Cell Biology and Physiology (primary appointment)
Associate Professor of Medicine
BS Zhejiang Medical University 1994
PHD University of CA San Diego 2002
MS Shanghai Inst of Biochemistry 1997

Peng Yuan, PHD
Assistant Professor of Cell Biology and Physiology (primary appointment)
BS University of Science & Tech 1997
PHD University of Pennsylvania 2008

Courses
The Department of Cell Biology and Physiology also offers courses through the Graduate School. For a full listing of courses, please visit the university online course catalog (https://courses.wustl.edu/CourseInfo.aspx?sch=L&dept=L41&crslvl=5:9).

M75 CellBio 501 Physiology
The structures of cells, tissues, and major organ systems are studied in relationship to their functions. Lectures integrate histology with cell biology and physiology. The laboratories consist of the study of prepared slides and electron micrographs using an iBook or eBook (ePub) guide. An extensive online digital annotated atlas (https://slide-atlas.org) and a video library are used to supplement the slides and electron micrographs. Presentations of case studies provide examples of clinical relevance. A dual-view microscope and slide set will be issued for each pair of students. Limited space is available for non-medical students, who must have permission from the course director to enroll.
Credit 125 units.

M75 CellBio 900 Research Elective — Cell Biology and Physiology
Research opportunities may be available. If interested, please contact the Department of Cell Biology & Physiology.