The principal research activities of the Department of Developmental Biology are focused on attaining a mechanistic understanding of animal development, encompassing the earliest cell fate specification and movement processes that shape the early embryo, organogenesis, stem cell biology and engineering, tissue homeostasis and repair, and aging. Students and postdoctoral fellows work closely with faculty and staff on research projects and participate in weekly journal clubs and seminars at which recent literature and ongoing research are discussed.

The developmental biology faculty employ a variety of model organisms and cell-based systems to answer key outstanding questions about the fundamental mechanisms of development and to apply this knowledge to pathogenic mechanisms leading to human birth defects and disease, and to improve future therapies. We take a broad view of developmental biology, with our research groups studying diverse developmental processes including early embryogenesis, organogenesis, and aging, and applying multidisciplinary approaches that include forward and reverse genetics, epigenetics, molecular and chemical, and computational methods. Embryogenesis is a fascinating process during which a fertilized egg undergoes divisions to form a mass of pluripotent cells that signal to one another to establish embryonic polarity, diverse cell types, and organs, and that also undergo massive cell migrations and rearrangements to sculpt the embryonic body.

Research is also carried out on the processes involved in tissue degeneration, repair and regeneration, the biology of embryonic and adult stem cells, and cellular reprogramming. It is a particularly opportune time for developmental biology research, as recent technological breakthroughs in both animal model systems and genomics afford insights into developmental processes at the epigenetic, genetic and molecular levels, and enable the monitoring of cell behaviors in vivo. We are discovering genes that are responsible for birth defects and defining connections between many adult human diseases and their origins during embryogenesis. The studies of stems cells, cellular reprogramming and regeneration are bringing us closer to curing human diseases, repairing damaged organs, and extending the boundaries of aging.

Website:http://devbio.wustl.edu

More information about Department of Developmental Biology degrees and requirements can be found in the Graduate School Bulletin.

Research in the department occurs in a highly collegial atmosphere and involves interdisciplinary collaborations between the members of the department, as well as investigators from different departments and centers throughout the School of Medicine, as well as the College of Arts & Sciences, and the School of Engineering & Applied Science. Developmental biology faculty have leading roles in several research centers, including the Center of Regenerative Medicine, the Center for the Investigation of Membrane Excitability Diseases, the Center for Cardiovascular Research, and the Hope Center. The department has a rich tradition of mentoring undergraduate, graduate and medical students, and postdoctoral fellows. We are committed to creating a research environment in which our trainees reach their maximum scientific potential and career goals while addressing key outstanding questions and making important discoveries.

Irving Boime, PhD
McDonnell Sciences Building, 3rd Floor
Phone: 314-362-2556
Secretion, targeting and structure-function of the human placental and pituitary glycoprotein hormones.

Douglas F. Covey, PhD
McDonnell Sciences Building, 3rd Floor
Phone: 314-362-1726
Medicinal chemistry of steroids.

Aaron DiAntonio, MD, PhD
6301, 4515 McKinley Research Building
Phone: 314-362-9925
Neurodevelopment, neurodegeneration, and axon regeneration in Drosophila and mouse.

Gregory A. Grant, PhD
North Building, 3rd Floor
Phone: 314-362-3367
Mechanism of allosteric regulation in enzymes.

Shin-Ichiro Imai, MD, PhD
McDonnell Medical Sciences Building, Room 362A
Phone: 314-362-7228
Molecular mechanisms of aging and longevity in mammals, particularly focusing on the tissue-specific functions of the mammalian NAD-dependent deacetylase Sirt1 and the physiological significance of systemic NAD biosynthesis mediated by Nampt (nicotinamide phosphoribosyltransferase) in an intimate connection between metabolism and aging.

Aaron N. Johnson, PhD
Cancer Research Building, 3rd Floor
Phone: 314-273-1834
Molecular mechanisms of muscle development and regeneration.

Kerry Kornfeld, MD, PhD
Cancer Research Building, 3rd Floor
Phone: 314-747-1480
Signal transduction during development. Zinc metabolism. Aging.

Kristen Kroll, PhD
320 McDonnell Sciences Building
Phone: 314-362-7045
Transcriptional networks that regulate the formation of neurons in early embryos and embryonic stem cells. Role of chromatin regulatory complexes in controlling pluripotency and differentiation.

Craig Micchelli, PhD
328 McDonnell Sciences Building
Phone: 314-362-7036
Our lab studies the regulation of stem cell biology in development, homeostasis and disease.

Mayssa Mokalled, PhD
Cancer Research Building, 3rd Floor
Phone: 314-273-1835
Spinal cord injury, degeneration and regeneration in zebrafish and mouse.

Kelly Monk, PhD
360 McDonnell Sciences Building
Phone: 314-362-3825
Mechanisms of myelin formation, demyelination and remyelination in zebrafish and mouse.

Samantha Morris, PhD
3316 McKinley Research Building
Phone: 314-747-8618
Stem Cell and Developmental Biology. Our research focuses on dissecting the gene regulatory networks that define cell identity, using the developing embryo and tissue regeneration as a guide to engineer fate in vitro.

Jeanne M. Nerbonne, PhD
9900 Clinical Sciences Research Building
Phone: 314-362-2564
Structure, function and regulation of voltage-dependent ion channels in the cardiovascular and nervous systems. Regulation of membrane excitability in health and disease.

David M. Ornitz, MD, PhD
South Building, 3rd Floor
Phone: 314-362-3908
Regulation of cardiovascular, lung, skeletal, and inner ear development, injury response, and regeneration by Fibroblast Growth Factors.

Zachary Pincus, PhD
5304 McKinley Research Building
Phone: 314-747-5520
Inter-individual variability in aging and lifespan. Developmental origins of longevity and adult health. Quantitative microscopy and image analysis of C. elegans.

John H. Russell, PhD
McDonnell Sciences Building, 3rd Floor
Phone: 314-362-2558
Mechanisms of lymphocyte-mediated inflammation and pathogenesis in the central nervous system.

Lila Solnica-Krezel, PhD
3911A South Building
Phone: 314-362-8768
Genetic Regulation of Vertebrate Embryogenesis. Genetic mechanisms that regulate cell fates and movements during early vertebrate development using forward and reverse genetics in the zebrafish model and human embryonic stem cells.

Andrew Yoo, PhD
361E McDonnell Sciences Building
Phone: 314-362-1811
Cell fate control by microRNAs. Neuronal reprogramming to generate human neurons. Chromatin controlling factors and genetic pathways that regulate neurogenesis.

The Department of Developmental Biology also offers courses through the Graduate School. For a full listing of courses offered, please visit the university online course catalog.


M04 FYSelect 500C Developmental Biology and Disease

Basic Science. Explores connections between basic research in developmental biology and disease. Students are expected to make a presentation based on current literature in the field and participate in class discussions.

Credit 10 units.


View Sections

M70 MolBio/Pha 900 Research Elective - Molecular Biology and Pharmacology

Research opportunities may be available. If interested, please contact the Department of Molecular Micobiology.


View Sections