James S. McDonnell Department of Genetics

The Department of Genetics (http://genetics.wustl.edu) is at the forefront of the rapidly developing field known as genomic (or personalized) medicine, in which genetic and epigenetic analysis coupled with clinical information enables treatments to be tailored specifically to the individual patient. The rapid evolution of sequencing technologies, genome engineering, automated cellular imaging and mass spectrometry methods to rapidly perform proteomic and metabolomics studies, coupled with powerful computational tools, is revolutionizing the biological sciences. Investigators in the department are developing new methods of genomic analysis including technology and software, epigenomics and copy number variation as well as studies of disease pathways using model organisms, to identify and study genes responsible for human disease and treatment responses.

The department supports a broad program of preclinical and graduate instruction in genetics, with research opportunities ranging from studies of transcriptional networks, population genetics, protein evolution, neurological disorders, developmental genetics, models of human disease, genome architecture, statistical genetics and computational biology, genome technologies and infertility.

A significant portion of the first-year course in basic medical sciences is devoted to human and clinical genetics, with emphasis on how genomic information will transform the practice of medicine. This includes specialized elective courses in addition to the core genetic curriculum. Advanced training in clinical genetics and in genetic research is available from the faculty in the Department of Genetics and from geneticists with principal appointments in many other departments within the School of Medicine (http://medicine.wustl.edu).

Advanced courses and seminars are offered that focus on the genetics of complex disease, gene expression, genome engineering, induced pluripotent stem cells, single cell genomics, molecular genetics, genetic epidemiology, computational biology, developmental genetics, microbial genetics, cancer genetics, and population and evolutionary genetics. Extraordinary opportunities for research training and experience are available in all of these areas and at all levels. The programs are tailored to meet the needs of medical students, graduate students, and both MD and PhD postdoctoral fellows pursuing advanced training in biomedical research.

Website: http://genetics.wustl.edu

Degrees & Requirements

While the Department of Genetics does not offer its own degree, some of the department’s courses are open to students in the MD and MSTP (MD/PhD) programs. Further information about the MD and MSTP degrees can be found in the Degrees & Programs Offered (http://bulletin.wustl.edu/medicine/degrees) section of this Bulletin.

Research

M20 Genetics 900

Cross-listed with L41 Biol 590

Barak Cohen, PhD
McKinley Research Building, Room 4308
Phone: 314-362-3674
Email (cohen@wustl.edu)

Don Conrad, PhD
McKinley Research Building, Room 6213
Phone: 314-362-4379
Email (don.conrad@wustl.edu)
Our group has a long-standing interest in developing new methods for characterizing the origin and functional impact of human genetic variation. Recently completed projects have covered the following topics: mapping of copy number variants, measurement of sex-specific mutation rate and variation in mutation rate among decomposing the relative impact of different types of mutation (SNPs, indels, CNVs, etc.) on gene expression variation and disease susceptibility. Currently, we have a number of active projects that address fundamental unsolved problems related to human reproduction. First: We are trying to unravel the genetic basis for a common form of male infertility, non-obstructive azoospermia, using oligonucleotide arrays and exome sequencing. The short-term goal of this project is to define causal mutations in the >400 cases in which we have access. Our ultimate goal is to provide an unbiased view of the genetic architecture of the disease and establish a definitive reference panel of causal mutations that clinicians can use to facilitate diagnosis of spermatogenic failure. Second: We are using sperm DNA from a longitudinal cohort of semen donors to study the processes of mutation and selection within the population of germ cells of individuals. There are a number of other potential projects ranging from topics of medical relevance such as the biology of the placenta and maternal-fetal compatibility to more basic questions regarding genome biology and evolution. Training in this elective will be primarily computational and can cover skills such as population genetic analysis, rare-variant association study methodology and other aspects of statistical genetics. However, parties interested in using other approaches to address the topics discussed here are welcome.
Joseph Dougherty, PhD
McKinley Research Building, Room 6316
Phone: 314-286-0752
Email (jdougherty@wustl.edu)
Our laboratory utilizes a variety of techniques spanning from human molecular genetics and informatics to mouse behavioral neuroscience and neuroanatomy. We develop and employ mouse models of psychiatric disorder, particularly those that mimic genetic variations we’ve identified from human patient populations, with the goal of trying to understand the cellular and molecular underpinnings of these disorders.

Susan K. Dutcher, PhD
McKinley Research Building, Room 5301
Phone: 314-362-2765
Email (dutcher@wustl.edu)
Studies on the role of centrioles and basal bodies in ciliary signaling, assembly, and motility using molecular genetics, computational, and biochemical approaches.

Heather Lawson, PhD
McKinley Research Building, Room 6312
Phone: 314-362-7269
Email (lawson@wustl.edu)
Translating genetic and epigenetic molecular and analytical observations to physiological endpoints. We apply several complementary and integrated approaches including bench science, cultured cells, mouse phenotyping and husbandry, and computational and systems biology.

Jeffrey Milbrandt, MD, PhD
McKinley Research Building, Room 6306
Phone: 314-362-4651
Email (jmilbrandt@wustl.edu)
We are performing Cas9/CRISPR activation and repression screens in iPSC-derived neurons together with single-cell transcriptomics analysis to evaluate the causal effects of genetic variants associated with neuropsychiatric diseases. We are also studying how metabolism influences axonal/glial interactions important for proper nerve function. We use genetic and metabolomic analysis to identify molecular mechanisms of axonal degeneration, a self-destructive process that plays an important role in many neurodegenerative conditions.

Rob Mitra, PhD
McKinley Research Building, Room 4301
Phone: 314-362-2751
Email (rmitra@wustl.edu)
Systems biology, gene regulation, and technology development. Projects in the lab fall into three general categories: 1) understanding the molecular logic of transcription factor cooperativity, 2) mapping the gene regulatory networks that control developmental processes and using this knowledge to reprogram fibroblasts into useful cell types, 3) developing novel technologies to more efficiently achieve the first two aims listed.

Samantha Morris, PhD
McKinley Research Building, Room 3316
Phone: 314-747-8618
Email (s.morris@wustl.edu)
Engineering cell fate to generate clinically valuable cell populations: stem cell and developmental biology. Our research focuses on dissecting the gene regulatory networks that define cell identity, using the developing embryo and tissue regeneration as a guide to engineer fate in vitro. We apply insight from these analyses to generate clinically relevant populations by differentiating cells from a pluripotent state, or by directly converting cells between mature fates. We employ a combination of computational, single-cell transcriptomics, cell and developmental biology approaches.

Zachary Pincus, PhD
McKinley Research Building, Room 5304
Phone: 314-747-5520
Email (zpincus@wustl.edu)
Inter-individual variability in aging and lifespan. Developmental origins of longevity and adult health. Quantitative microscope and image analysis of C. elegans.

Michael A. Province, PhD
Farrell Learning and Teaching Center (FLTC), 6th floor, Suite 605
Phone: 314-362-3616
Email (mprovince@wustl.edu)
Development and evaluation of novel statistical genetics methodology, especially as applied to genomic identification and validation of variants for human complex quantitative traits, such as heart disease, cancer, pulmonary function, diabetes and human longevity.

Nancy L. Saccone, PhD
Farrell Learning and Teaching Center (FLTC), 6th floor, Suite 606
Phone: 314-747-3263
Email (nlims@wustl.edu)
Statistical genetics and psychiatric genetics. Development and application of analysis methods for studying the genetics of human disease and complex traits.

Tim Schedl, PhD
McKinley Research Building, Room 5305
Phone: 314-362-6162
Email (ts@wustl.edu)
Germ cell development in the model organism Caenorhabditis elegans. The major focuses are: control of the decision to proliferate or enter the meiotic pathway, control and coordination of meiotic prophase progression and gametogenesis, and control of meiotic maturation and ovulation.

James Skeath, PhD
McKinley Research Building, Room 6315
Phone: 314-362-0535
Email (jskeath@wustl.edu)
Identification of the genes and the elucidation of the molecular mechanisms that regulate the early events of Drosophila central neurogenesis; illumination of the mechanisms that form, pattern and specify the individual identities of the progenitor cells of the Drosophila embryonic CNS.

Gary D. Stormo, PhD
McKinley Research Building, Room 4208
Phone: 314-747-5534
Email (stormo@wustl.edu)

Ting Wang, PhD
McKinley Research Building, Room 5211
Phone: 314-286-0865
Email (twang@wustl.edu)
We work in the general field of computational genomics and epigenomics. We study the evolution of human regulatory networks, with a focus on mobile elements (or transposable elements) and their impact on gene regulation, their genetic and epigenetic control, and their roles in human biology and diseases.

Faculty

Department Head
Jeffrey D. Milbrandt, MD, PhD

Director, McDonnell Genome Institute
Susan Dutcher, PhD (Interim)

Director, Division of Statistical Genomics
Michael Province, PhD

Director, Genome Technology Access Center
Rich Head, MS

Director, Genome Engineering and iPSC Center
Xiaoxia Cui, PhD

Visit our website for more information about our faculty (http://genetics.wustl.edu/faculty) and their appointments.

B

Ruteja A. Barve, PHD, MS
Instructor in Genetics (primary appointment)
PHD Washington Univ in St. Louis 2014
BS University of Pune 1995
MS Washington Univ in St. Louis 2008

John Rutledge Bermingham Jr, PHD
Associate Professor of Genetics (primary appointment)
BS Yale University 2016
PHD University of Colorado Boulder 2016

Ingrid B Borecki, MS, PHD
Adjunct Professor of Genetics (primary appointment)
MS University of Hawaii 1980
PHD University of Hawaii 1981
BS University of Illinois 1977

William James Buchser, PHD, B MUS
Assistant Professor of Genetics (primary appointment)
PHD University of Miami 2009
B MUS University of Miami 2002

C

Paul F Cliften, PHD, MS
Associate Professor of Genetics (primary appointment)
PHD University of California 1999
MS Utah St University 1995
BS Utah St University 1992

Barak Alon Cohen, PHD
Professor of Genetics (primary appointment)
Alvin Goldfarb Distinguished Professor of Computational Biology
BS Cornell University 1992
PHD Harvard University 1998

Donald Franklin Conrad, PHD, MS
Adjunct Associate Professor of Genetics (primary appointment)
BS Dartmouth College 1999
PHD University of Chicago 2007
MS Stanford University 2017

Seth Daniel Crosby, MD
Assistant Professor of Genetics (primary appointment)
BS University of California 1984
MD University Texas San Antonio 1989

Xiaoxia Cui, MS, PHD
Assistant Professor of Genetics (primary appointment)
MS University of Alabama 2017
PHD University of Texas Austin 2017
BS Nanjing University 2017

D

Joseph D Dougherty, PHD
Associate Professor of Genetics (primary appointment)
Associate Professor of Psychiatry
BS Truman State University 1999
PHD University of California 2005

Susan K. Dutcher, PHD
Professor of Genetics (primary appointment)
Interim Director of the McDonnell Genome Institute
Professor of Cell Biology and Physiology
BA Colorado College 1974
PHD University of Washington 1980

F
Justin C. Fay, PHD
Adjunct Associate Professor of Genetics (primary appointment)
PHD University of Chicago 2001

H
Richard D Head, MS
Associate Professor of Genetics (primary appointment)
Associate Professor of Pathology and Immunology
MS Southern Illinois University 1992

K
Sungsu Kim, PHD, MS
Instructor in Genetics (primary appointment)
BS Korea University 2000
PHD Washington Univ in St. Louis 2010
MS Korea University 2002

L
Haluk Lacin, PHD
Instr in Genetics (primary appointment)
BS Bogazici University 2003
PHD Washington Univ in St. Louis 2010

Heather A Lawson, MA, PHD
Assistant Professor of Genetics (primary appointment)
MA Pennsylvania State University 2004
BA Univ of Wisconsin Milwaukee 2002
PHD Pennsylvania State University 2008

Huawen Lin, PHD
Instructor in Genetics (primary appointment)
BS School Not Listed 1998
PHD Washington Univ in St. Louis 2006

M
Xianrong Mao, MS, PHD
Instructor in Genetics (primary appointment)
BS Lanzhou University 1993
MS Chinese Academy of Sciences 1996
PHD University of Arkansas 2001

James P Mc Carter, MD, PHD
Adjunct Professor of Genetics (primary appointment)
MD Washington Univ in St. Louis 1998
PHD Washington Univ in St. Louis 1998
BA Princeton University 1989

Jeffrey D Milbrandt, MD, PHD
James S McDonnell Professor of Genetics (primary appointment)
Head of the Department of Genetics
Professor of Medicine
Professor of Neurology

Professor of Pathology and Immunology
MD Washington Univ in St. Louis 1978
PHD University of Virginia 1983
BS Univ of Nebraska at Kearney 1974

Robi D. Mitra, PHD
Associate Professor of Genetics (primary appointment)
Alvin Goldfarb Distinguished Professor of Computational Biology
PHD Mass Inst of Technology (MIT) 2000

P
Zachary Scott Pincus, PHD
Assistant Professor of Genetics (primary appointment)
Assistant Professor of Developmental Biology
PHD Stanford University 2007
BS Stanford University 2002

Michael A Province, PHD, MA
Professor of Genetics (primary appointment)
Professor of Biostatistics
BA University of Dallas 1973
PHD Washington Univ in St. Louis 1987
MA Washington Univ in St. Louis 1979

S
Nancy L. Saccone, PHD, MS
Associate Professor of Genetics (primary appointment)
Associate Professor of Biostatistics
PHD Brown University 1993
BA University of California 1988
MS Brown University 1990

Yo Sasaki, MS, PHD
Associate Professor of Genetics (primary appointment)
MS Tokyo U of Agric & Technology 1994
PHD Gunma University, Med School 1997
BS Tokyo U of Agric & Technology 1991

Tim B Schedl, PHD
Professor of Genetics (primary appointment)
PHD Univ of Wisconsin Madison 1984
BA Lawrence University 1977

James B Skeath, PHD
Professor of Genetics (primary appointment)
BA Haverford College 1988
PHD Univ of Wisconsin Madison 1993

Gary D Stormo, PHD, MA
Professor of Genetics (primary appointment)
Joseph Erlanger Professor
Professor of Biomedical Engineering
Professor of Computer Science
PHD University of Colorado Boulder 1981
MA University of Colorado Boulder 1975
BS California Institute Technolo 1972
Courses

M20 Genetics 511 Medical Genetics
Medical genetics is both a science and a clinical area or specialty of medicine, and the boundary between research and clinical application is increasingly blurred. The pace in which genomic and epigenomic tools are being developed is unprecedented. And these tools result in continual conceptual advancements, which inevitably affect how we approach the study of disease risk, diagnosis and management in all areas of medicine, not just medical genetics. We are moving into a time when the interpretable data from the examination of individual genomes will be incorporated to all other clinical data to assess individual risks and guide clinical management and decision-making. This course is intended as the first step toward lifelong training in medical genetics and genomics. The course begins with a number of sessions devoted to basic principles of genetics. Drawing on this foundation we move on to discuss genomic and epigenomic tools and learn from leaders in their fields about the big questions in genetics and genomics (i.e., microbiome research, cancer genomics, current clinical uses of exome sequencing, etc.) and how the tools are being used to answer these questions. Students are exposed to the use of genetic and genomic databases and information resources; which will allow them to keep up with new information and critically appraise validity and clinical utility. We begin to discuss the implication of this shift to the "genomic era," particularly regarding ethical aspects, regulatory aspects, equal access, health care costs and patient education. Clinical geneticists actively participate in the course and use a series of genetic disorders to help students apply their knowledge; focusing mainly on genetic etiology, pattern of inheritance, inheritance risk and molecular diagnostic testing. Frequent patient interviews further enhance the exposure to clinical genetics. Overall the course aims to enhance genetic and genomic literacy, which is an essential first step in preparing students to participate in the multidisciplinary teams that effectively make cutting-edge genetic and genomic research results accessible to patients. This course is cross-listed with L41 (Biol 550). Credit 34 units.