Population Health Sciences

The Master of Population Health Sciences (MPHS), offered by the School of Medicine, is a 10-month degree program for clinicians, clinical doctorates, medical students and health sciences students seeking training in clinical research methods. The curriculum emphasizes the role of epidemiology and biostatistics in approaching clinical effectiveness and outcomes research for all medical specialties. The MPHS does not require a research thesis upon completion of the program. Instead, the program innovatively uses applied course work to focus on the long-term mastery of skills. Using topics relevant to their careers and interests, MPHS students practice the art of developing research study protocols, performing systematic reviews, designing epidemiologic studies and much more. Many students go on to produce award-winning research using their applied course work and skills learned in the program. MPHS students deepen their learning by choosing one of four concentrations: Clinical Epidemiology, Health Services, Quantitative Methods, or Psychiatric and Behavioral Health Sciences.

Contact: Blanka Hodzic, Program Coordinator
Email: bhodzic@wustl.edu
Website: http://www.mphs.wustl.edu

Degrees & Requirements
MD/MPHS
The MD/MPHS provides medicents with an opportunity to supplement their clinical training and course work with a quantitative approach to population health science research. Students develop core skills in epidemiology and biostatistics, which can be applied to research in any clinical field, from primary to specialty care. The program is intended for medical students who plan to incorporate clinical or population health research into their clinical careers, including clinical effectiveness and outcomes research. The program is not restricted to Washington University medical students; students from other medical schools are encouraged to apply. The program combines the traditional medical school curriculum with one additional year of full-time study for the MPHS degree. This added year is typically taken after the second or third year of medical school.

Requirements
Program Format
The MPHS program is a full-time, 10-month format. A minimum of 12 credit hours is required for full-time student status, and the maximum course load is 18 credit hours per semester. Part-time study options are available.

Core MPHS Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHS 510</td>
<td>Introduction to SAS for Clinical Research 1</td>
<td>1</td>
</tr>
<tr>
<td>PHS 501</td>
<td>Introduction to Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>PHS 502</td>
<td>Intermediate Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>PHS 600</td>
<td>Applied Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>PHS 511</td>
<td>Introductory Biostatistics for Clinical Research</td>
<td>3</td>
</tr>
<tr>
<td>PHS 512</td>
<td>Intermediate Biostatistics for Clinical Research</td>
<td>3</td>
</tr>
<tr>
<td>PHS 505</td>
<td>Ethics in Population and Clinical Health</td>
<td>1</td>
</tr>
<tr>
<td>PHS 500</td>
<td>Current Topics in Public Health</td>
<td>1</td>
</tr>
</tbody>
</table>

1 Students with previous SAS experience may opt out of this required class by taking the final exam on Friday, July 20, 2018 from 9-11 a.m. in the Taylor Avenue Building (exact room TBD). Students who receive a 90 percent or higher on the exam will be exempt from taking the course.

Information on elective courses is available on our MPHS website (http://www.mphs.wustl.edu).

Research

Research Projects & Assignments
The MPHS program uses applied course work, which means students use their own research projects and interests for class discussions and assignments. This format helps our students apply and master research concepts quickly and maximizes research productivity during their time in the program.

For example, students will write and design research protocols, systematic reviews and meta-analysis, grant proposals, and more. Additionally, our instructors select case studies, prioritize reading lists, and shape class discussions from current, in-the-news clinical outcomes research and population health topics.

Students are not required to complete a research project for graduation. The focus in the MPHS program is on the practice and mastery of clinical research skill sets for long-term benefit. Students are encouraged to have a primary mentor connected to their research while in the MPHS program. If needed, our program leadership can help students find a research project or mentor.

Faculty

Director
Graham Colditz, MD, DrPH (http://publichealthsciences.wustl.edu/en/About-Us/Division-Chief)
Co-Deputy Director
Yikyung Park, ScD (http://publichealthsciences.wustl.edu/en/Faculty/ParkYikyung)

Co-Deputy Director
Adetunji Toriola, MD, PhD (http://publichealthsciences.wustl.edu/Faculty/ToriolaAdetunji)

Associate Director for Medical Students
Allison King, MD, MPH, PhD (https://wuphysicians.wustl.edu/for-patients/find-a-physician/allison-a-king)

Visit our website for more information about our faculty (http://publichealthsciences.wustl.edu/Faculty) and their appointments.

Courses

M19 PHS 500 Current Topics in Public Health
Students will review public health research, interventions and problems making headlines in print and television media. Discussion of how the problem is presented and evaluated will take place, and students will discuss alternate approaches. Course activities: brief presentations, short written assignments, class participation. Course note: required for medical students. Credit 1 unit.

M19 PHS 501 Introduction to Epidemiology
This course introduces the basic principles and methods of epidemiology, with an emphasis on critical thinking, analytic skills, and application to clinical practice. Topics include outcome measures, methods of adjustment, surveillance, quantitative study designs, and sources of data. Designed for those with a clinical background, the course will provide tools for critically evaluating the literature and skills to practice evidence-based medicine. Course activities: lectures, midterm and final exams, class participation, problem sets and papers. Course note: M21 503 required prerequisite. Credit 3 units.

M19 PHS 502 Intermediate Epidemiology
The second course in the Epidemiology series, this course builds upon the basic principles and methods of epidemiology and introduces additional tools and concepts that are critical to a comprehensive study design. Topics include risk and association, sampling strategies, interaction, confounding, adjustment, lifetables, applied causal inference, validity and reliability, social epidemiology, and approaches to data analysis. Upon exiting this course, students will be prepared to approach the study design portion of a protocol, as required by the final course in the Epidemiology series. Course activities: lectures, midterm and final exams, class participation, problem sets and papers. Course note: M19-501 required prerequisite. Credit 3 units.

M19 PHS 505 Ethics in Population and Clinical Health
This course will expose population and clinical health researchers to the various ethical issues and situations encountered in their research and clinical duties, with a focus on research-related issues and solutions. It will also familiarize them with available ethics and compliance resources. Case studies and scenario presentations will facilitate discussion on topics such as informed consent, rights to health, personal responsibility for health, allegations of misconduct, research with communities, data objectivity and presentation, publications, collaborators' rights and responsibilities, intellectual property, and student-mentor relationships. Credit 1 unit.

M19 PHS 510 Introduction to SAS for Clinical Research
This one-week course is designed to equip medical students, clinicians and health researchers with basic SAS programming skills. Students will learn how to operate SAS, import external data, create SAS data sets, create, format and manipulate variables, and export data and results. Upon completion of this course, students will have obtained a basic understanding of the SAS environment. Credit 1 unit.

M19 PHS 511 Introductory Biostatistics for Clinical Research
This introductory course in biostatistics is designed for medical students, clinicians and health researchers. The course will introduce students to basic statistical concepts including hypothesis testing, probability distributions and relevant basic statistical methods. Through in-class and homework assignments, students will learn to apply statistical concepts to the medical context. Upon completion of the course, students will be able to summarize quantitative data and carry out and interpret simple data description and analyses using the SAS program. Prerequisite for the course is knowledge in SAS. Credit 3 units.

M19 PHS 512 Intermediate Biostatistics for Clinical Research
This intermediate course is designed for medical students, clinicians and health researchers and builds on the skills developed in Introduction to Biostatistics for Clinical Research. The course will focus on more advanced statistical concepts as applied to clinical and population-based data sets, including linear and logistic regression analyses, and survival analyses. Through applied course work, students will learn how to analyze and interpret clinical research data. Upon completion of the course, students will be able to perform statistical data analyses for regression models with continuous, categorical, and survival outcomes using the SAS program, and will be able to use these models to address their research questions. Prerequisite for the course is an introductory course in biostatistics and SAS knowledge. Credit 3 units.

M19 PHS 5252 Comparative Effectiveness Research
This course will provide a comprehensive introduction to comparative effectiveness research. Topics include an overview of comparative effectiveness research, stakeholder engagement
in comparative effectiveness research, designing comparative effectiveness research methodologic challenges in doing comparative effectiveness research, and recent developments in PCORI and federal policy. Students will be expected to review and evaluate comparative effectiveness studies as well as actively participate in class discussions. Course note: M19-501 and M21-560 are required prerequisites; SAS software required. If student is not in the MPHS program, they must contact the program regarding registration.
Credit 2 units.

M19 PHS 524 Using Administrative Data for Health Services Research
The objective of this advanced graduate course is to prepare highly motivated students to perform health services research using administrative data. Lectures will provide tutorials on national administrative databases, review journal articles using these databases, instruction in SAS programming and application of health services research methods using administrative databases. Strengths and limitations of large databases that are commonly used for research will be considered, and special attention will be devoted to large federal databases that are readily available to new investigators. Students will learn how to obtain, link and analyze large databases, understand the key issues related to data security and confidentiality, and become knowledgeable about key methodologic issues in observational studies using administrative data. Students will evaluate published studies based on large administrative databases, develop a health services research proposal and complete a short research project that uses administrative data.
Credit 3 units.

M19 PHS 526 Patient Safety, Quality Management, and Quality Improvement
This course introduces principles of patient safety, quality measurement and quality improvement. Classes are designed to provide students with hands-on skills in systems thinking and in preventing, learning from, and dealing with medical error and adverse events. Students will also learn fundamentals in approaches to evaluating quality, including quantitative methods in measure development. We will discuss various approaches and challenges to knowledge translation and effective change management in improving quality. Students will be encouraged to use their real-world experiences in problem solving around patient safety concerns, to develop and evaluate quality measures in their respective fields and to develop a quality improvement project in their area of interest as part of the course. If student is not in the MPHS program, they must contact the program regarding registration.
Credit 3 units.

M19 PHS 527 Development, Validation and Application of Risk Prediction Models
This course will present an introduction to the methods of predictive modeling, with applications to both genetic and clinical data. Basic concepts and philosophy of supervised and unsupervised data mining as well as appropriate applications will be discussed. Topics covered will include multiple comparisons adjustment, cluster analysis, self-organizing maps, principal component analysis, and predictive model building through logistic regression, classification and regression trees (CART), multivariate adaptive splines (MARS), neural networks, random forests, and bagging and boosting. Approaches to validation will be discussed, and strategies for estimation of added value with expanded variable lists will be a key focus of this applied quantitative methods course. Course note: Biostatistics I and II (M21-560 and M21-570) are required prerequisites. If student is not in the MPHS program, they must contact the program regarding registration.
Credit 2 units.

M19 PHS 530 Multilevel models in Quantitative Research
This course covers statistical model development with explicitly defined hierarchies. Such multilevel specifications allow researchers to account for different structures in the data and provide for the modeling of variation between defined groups. The course begins with simple nested linear models and proceeds on to non-nested models, multilevel models with dichotomous outcomes, and multilevel generalized linear models. In each case, a Bayesian perspective on inference and computation is featured. The focus on the course will be practical steps for specifying, fitting and checking multilevel models with much time spent on the details of computation in the R and Bugs environments. Prerequisites: Math 2200, Math 3200, Poli Sci 581, or equivalent.
Same as L32 Pol Sci 584
Credit 3 units.

M19 PHS 532 Applied Qualitative Methods for Health Research
This course will introduce students to the most commonly used qualitative methods for medical-related research. It will provide a foundation in the application of qualitative methods to medical and health research. Topics addressed will include uses of qualitative data, designing studies, sampling strategies, collecting data, and qualitative analysis. A variety of methods will be discussed, with an emphasis on using focus groups and various interviewing techniques. Students will learn the best practices in qualitative research and how to critically evaluate qualitative studies and articles. Upon completion of the course, students will be able to plan, conduct and analyze a qualitative study. If student is not in the MPHS program, they must contact the program regarding registration.
Credit 3 units.

M19 PHS 540 Decision Analysis for Clinical Investigation and Economic Evaluation
In this course, we will introduce students to the methods and applications of decision analysis and cost-effectiveness analysis in health care technology assessment, medical decision making, and health resource allocation. At the conclusion of the class, the student will have an understanding of the theoretical basis for economic evaluation and decision analysis, its application, and hands-on experience in the application of the methods. Among the topics covered are the development of a research question, choice of decision perspective, development of a decision analytic model, estimation of costs and benefits, use of preference based measures, addressing uncertainty and preparation of a manuscript presenting a decision analytic study.
Credit 3 units.

M19 PHS 550 Randomized Controlled Trials
This course provides a comprehensive introduction to randomized controlled clinical trials. Topics include types of clinical trials research (efficacy and effectiveness trials), study design, treatment allocation, randomization and stratification, quality control, analysis, sample size requirements, patient
This course takes an integrated developmental approach to the epidemiology, etiology and evolving nosology of psychiatric disorders. Part I will lay the conceptual groundwork to understand and conduct research on psychiatric disorders and their risk factors in the general population. Part II will cover disorders that are traditionally considered under the purview of child psychiatry but that have developmental consequences for adulthood. Part III will cover psychiatric disorders unique in adulthood as well as those that often emerge in adolescence or earlier. Part IV will be devoted to special and contemporary topics in psychiatric and developmental epidemiology. Discussion and instruction in the use of relevant data sets will be integrated into all sections. By the end of the course, students will be expected to design and conduct basic analyses of existing psychiatric epidemiologic data. Course activities: lectures, class discussion, analytical project, presentation, complete a literature review paper. If student is not in the MPHS program, they must contact the program regarding registration. Credit 3 units.

M19 PHS 562 Addictions and Addictive Behaviors

This course provides an overview of the principles of substance-related addictions and the processes and mechanisms that underlie addiction. Students will be introduced to the epidemiology and developmental course of addiction, risk and protective influences that act on the course of addiction and its adverse health consequences. Both genetic and environmental underpinnings will be discussed. The impact of policy and economics will be studied. Emerging addictive behaviors, effective interventions and treatment modalities will be discussed. Students will be expected to participate in class discussions, complete written assignments (review paper format) and present one of their written assignments via in-class presentation. Course activities: lectures, class discussion, review paper presentation, three short papers. Course note: a required course for the Psychiatric and Behavioral Health Sciences Concentration. Prerequisite: M21-560 Biostatistics I or course director approval. If student is not in the MPHS program, they must contact the program regarding registration. Credit 3 units.
with the audience. The course will equip students with the skills, technique, experience and confidence needed to give successful, engaging media interviews and presentations related to the publication of research and expertise-specific topics. Through critique, tape and review exercises, class discussion, and guest speakers, students will learn about the facets that make an interview or presentation successful, including nonverbal communication and delivery skills (body language and vocal interpretation), content and messaging, and navigating interactions with the media. The instructor will evaluate each student's skill set and create a working skills inventory on which the student will build throughout the course in a series of on-camera experiences.

Credit 1 unit.

M19 PHS 600 Applied Epidemiology

The final course in the epidemiologic methods course sequence, this course provides students the opportunity to apply the methods and principles learned previously to a specific research problem of their own choosing. This course is designed to provide students with an understanding of the processes involved in applying their training to the design and conduct of research. Students will prepare a research grant application in the format expected for a National Institutes of Health R03/ R21 grant application. Students will also learn how other organizations differ in their grant application process, with particular attention to AHRQ. The course offers students the opportunity to critically evaluate scientific research proposals for scientific merit. Course activities: lectures, class discussion, presentation and review of an individual grant. If student is not in the MPH program, they must contact the program regarding registration.

Credit 3 units.

M19 PHS 610 Multilevel and Longitudinal Data Analyses for Clinical Research

The course is designed for medical students, clinicians and health researchers. The course is an extension of Intermediate Biostatistics (M19-512, instructor Yan Yan). The topics include basic statistical concepts and methods for various types of clinical data (continuous, categorical, count, and time-to-event outcome data) in multilevel and longitudinal settings. Through lectures, SAS labs, and homework assignments, students will understand the basic statistical concepts and methods for the four types of clinical outcome data in multilevel and longitudinal settings, will be able to address clinical research questions using these concepts and methods, will be able to perform basic data analyses on these types of data with SAS software, and will be able to interpret the results in the context of clinical research.

Credit 3 units.