The Edward Mallinckrodt Institute of Radiology (more commonly known as Mallinckrodt Institute of Radiology or MIR) serves as the Department of Radiology for Washington University in St. Louis School of Medicine, helping to guide the consulting physician in the discovery, treatment and, ultimately, the healing of disease. Established in 1930, MIR is one of the largest and most scientifically sophisticated radiology centers worldwide.

Internationally recognized for its groundbreaking research, the Institute continues to pioneer new radiological techniques for better patient care.

Milestones

  • development of the first diagnostic test for gallbladder disease
  • design and construction of the first cross-sectional X-ray laminagraph
  • collaboration on design and installation of the first cyclotron located in a U.S. medical center
  • development of positron emission tomography (PET)
  • installation of one of the world's first computed tomography (CT) and magnetic resonance (MR) scanners
  • interfacing of a minicomputer with a gamma camera, improving accuracy and efficiency of nuclear medicine procedures
  • establishment of the first mobile mammography van west of the Mississippi River
  • integration of CT and MR scans with three-dimensional technology application of organic chemistry to the preparation of radiopharmaceuticals used in medical imaging
  • measurement of cerebral blood flow and metabolism
  • establishment of one of the largest, most comprehensive interventional radiology services in the United States
  • application of PET for measuring metabolic activity in relation to cardiac blood flow
  • early adoption of sequential PET/MR imaging

The Institute occupies more than 400,000 total square feet, comprising its own 12-story building, with satellite facilities in Barnes-Jewish and St. Louis Children's hospitals; the Clinical Sciences Research and East buildings; the Scott Avenue Imaging Center; the Center for Advanced Medicine; the Knight Emergency and Trauma Center; and the South County Siteman Cancer Center. The department provides diagnostic radiology, nuclear medicine and radiation physics services for all hospitals in the Washington University Medical Center, Barnes-Jewish West County and Barnes-Jewish St. Peters hospitals. The Institute provides diagnostic radiology for the Washington University Orthopedic and Barnes-Jewish Hospital Outpatient Orthopedic center.

MIR clinical facilities are on the second floor of the Institute (general diagnostic radiology); third floor (neuroradiology); fourth floor (gastrointestinal and genitourinary radiology, and ultrasonography); and the fifth floor (MRI). A comprehensive interventional radiology center occupies the eighth floor. Nuclear medicine is on the ninth floor of the Barnes-Jewish Hospital West Pavilion. Orthopedic imaging and musculoskeletal radiology services are on the sixth floor of the Center for Advanced Medicine. The Breast Health Center, on the fifth floor of the Center for Advanced Medicine, is a multidisciplinary facility that provides a full range of breast imaging services and interventional procedures. In the north wing of St. Louis Children's Hospital is a complete pediatric radiology facility, offering ultrasound, nuclear medicine, CT and MRI and interventional radiology.

The Institute has 102 examination rooms used for diagnostic radiology. Clinical and research equipment includes two PET/CT scanners, 13 CT scanners, two PET scanners, one PET/MR scanner, 15 MR scanners (including an 11.7-Tesla research scanner), 12 high-end ultrasound machines plus seven portable units, nine interventional radiology systems, five digital chest units, 10 computer radiography units, two neurointerventional radiology systems and six mammography units. In addition, as part of the department's community outreach effort, the Institute co-sponsors with the Alvin J. Siteman Cancer Center a mobile mammography van that provides screening services at corporate and public sites in the St. Louis area.

MIR has approximately 200,000 square feet devoted to research, with facilities in the Clinical Sciences Research Building (radiological sciences), in the East Building (electronic radiology), in the Scott Avenue Imaging Center (neurological PET, molecular pharmacology, biomedical MR imaging, optical imaging and cardiovascular imaging), and in the Center for Clinical Imaging Research (a bioimaging facility for basic and translational inpatient and outpatient clinical research).

Administrative, teaching and support functions occupy the sixth floor and the ninth through the 12th floors of the Institute.

Website:https://www.mir.wustl.edu

While the Department of Radiology does not offer its own degree, some of the department's courses are open to students in the MD and MSTP (MD/PhD) programs. Further information about the MD and MSTP degrees can be found in the Degrees & Programs Offered section of this Bulletin.  

Interested students should contact the appropriate individual in each division regarding the types of research projects available.

Tom Conturo, MD, PhD
East Building, 2nd Floor, Rm 2120
Phone: 314-362-8421
Magnetic resonance (MR) imaging is a noninvasive means of providing images of the human body at high spatial resolution and contrast sensitivity. The contrast can be manipulated to depend on different properties of tissue water, enabling the study of a variety of biological processes. In some cases, endogenous or exogenous paramagnetic MR contrast agents are used to alter the MRI contrast by perturbing the tissue water environment. Recently, new MRI hardware has also enabled techniques having high temporal resolution. Using the unique contrast properties of MRI and the higher spatial/temporal resolution, noninvasive techniques can be devised to study neuronal activity, tissue perfusion, water mobility (diffusion), and neuronal fiber pathways in the human brain. The goals of Dr. Conturo's research lab are to develop and apply MR imaging techniques for quantitative imaging of cerebral perfusion, brain function, water diffusion, and neuronal fiber pathways. These techniques utilize the MR signal effects of exogenous bolus-injected contrast agents, endogenous hemoglobin, and microscopic water diffusion. Long-term goals are to apply these methodologies toward imaging and understanding tissue structure, function, and physiology in the brain and other organs in normal and abnormal conditions. The approaches that are used in this laboratory cover a broad range of areas, including MRI physics, MRI pulse sequence development, theoretical derivations, computer simulations, image-processing, computer graphics, custom contrast agent design and syntheois, phantom studies, animal models, human studies, clinical patient studies, and comparison with other imaging modalities.

Farrokh Dehdashti, MD
Nuclear Medicine PET Facility, 10th Floor, Mallinckrodt Institute of Radiology
Phone: 314-362-1474
Positron emission tomography (PET) is an imaging technique that produces images reflective of biochemical processes of normal and abnormal tissues. PET is complementary to anatomic imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). The ability of PET to quantify fundamental processes, such as blood flow, oxygen metabolism, glucose metabolism, and receptor density, makes this technique very desirable to both investigators and clinicians. Dr. Dehdashti's research utilizes the conventional PET radiopharmaceutical, F-18 fluorodeoxyglucose (FDG), as well as a variety of unique PET radiopharmaceuticals such as Cu-64-diacetyl-bis[N4-methylthiosemicarbazone (Cu-64 ATSM), a hypoxic imaging tracer, and 18F-labeled 3′-deoxy-3'fluorothymidine (FLT), a proliferative imaging tracer. Below is a partial list of the research projects relating to PET: (1) PET assessment of progesterone receptors in patients with newly diagnosed breast cancer with a new progesterone-receptor imaging tracer, 21-[18F]Fluoro-16,17-[(R)-1'–furylmethylidene)dioxy]-19-norpregn-4-ene-3,20 dione (FFNP); (2) assessment of cell proliferation with a new tracer, N-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-2 (2-[18F]-fluoroethoxy)-5-methylbenzamide ([18F]3c), also called [18F]ISO-1 by imaging sigma receptors in patients with various solid cancers; (3) PET assessment of tumor hypoxia using 64Cu-ATSM in patients with cervical cancer (the major goal of this project is to predict prognosis); (4) FDG-PET/CT study in cervical cancer to evaluate the change in tumor FDG heterogeneity and SUVmax during chemoradiation and whether these changes are predictive of response to therapy; (5) PET using [18F]FHBG (9-[4-fluoro-3-hydroxymethyl-butyl]guanine), analog of Penciclovir, an acycloguanosine derivative and antiviral drug, for possible tracking of GvHD in patients who were prior recipients of unrelated allogeneic bone marrow transplant for any hematologic malignancy; (6), FLT-PET/CT to assess tumor cell proliferation in patient must have histologically or cytologically confirmed ER+ stage IV or metastatic invasive breast cancer.

Rob J. Gropler, MD
East Building, Room 1307
Phone: 314-747-3878
Cardiovascular Imaging Research. The research in the Cardiovascular Imaging Laboratory is designed to better understand the relationship between myocardial perfusion, intermediary metabolism and mechanical function in both normal and abnormal cardiac states. The research involves the integration of several imaging techniques with diverse strengths such as PET, MRI, CT and echocardiography. The success of the research requires several paths of investigation to be pursued in parallel. For example, in order to image the biologic processes of interest requires continued technical developments for each of the imaging methods listed above. There are ongoing efforts to permit more accurate PET measurements of myocardial substrate metabolism. They include the development of novel tracers of extracted substrates, the development of acquisition schemes to assess endogenous substrate metabolism, and the validation of mathematical approaches to correlate the tracer kinetics with the underlying metabolic processes. These studies are being pursued in small and large animal models and then in humans. Another example includes the current efforts to develop approaches to image the coronary arteries noninvasively by MRI using novel contrast agents and acquisition schemes. In addition, techniques are being developed to permit MR guided interventions on the coronary arteries. This undertaking includes the development of novel guide-wire tracking and catheter tracking schemes using both passive and active approaches. Finally, to permit assessments of myocardial oxygenation and thus, perfusion, techniques are being developed to permit BOLD imaging the myocardium. Another path of the research is to determine how this perfusional-metabolic-functional relation is altered by normal life changes and then determine how disease states alter the relationship. For example, both PET and echocardiography are being used to characterize the age- and gender-related changes on myocardial perfusion, substrate metabolism and function. To study the relationship in disease states, similar studies are being performed in patients with diabetes and obesity. A third path is to determine the mechanisms responsible for these changes in this metabolic-functional relation and identify potential interventions that may reverse or ameliorate them. In this regard, similar imaging studies are being performed to determine the importance of nitric oxide and the PPARa system in defining this metabolic-functional relation.

Stephen M. Moerlein, PharmD, PhD
East Building, 1st Floor
Phone: 314-362-8466
Research interests lie in the general area of labeled tracer development for nuclear medicine imaging, especially positron-emission tomography (PET). Developmental effort begins with synthesis of target structures, preclinical screening that involves in vitro biochemistry and pharmacological testing, and ex vivo biodistribution studies in small animals. Promising tracers are then examined by in vivo imaging of animal subjects and tracer kinetic modeling. The final step in the transition of a radiochemical into a labeled drug takes into account radiation dosimetry, pharmaceutical quality, and the development of automated production and GMP production processes to streamline delivery to human subjects. Each of these aspects of radiopharmaceutical development are investigated, with a primary emphasis in novel agents for evaluation of pathological processes in neurology and oncology.

Marc Raichle, MD
East Building, 2nd Floor
Phone: 314-362-6907
We use functional imaging techniques, both positron emission tomography and functional magnetic resonance imaging, to study the normal organization of the human brain and the effect of selected diseases. The research focuses on both the methodology (imaging and experimental) and specific questions in cognitive neuroscience.

Contact: Michelle Miller-Thomas, MD, Coordinator of Radiology Medical Student Education; 314-362-5949, miller-thomasm@wustl.edu


Visit online course listings to view offerings for M90 Radiol.


M90 Radiol 701 General Radiology Clerkship

Valid start weeks for four-week blocks are: Weeks 5, 9, 13, 17, 21, 25, 29, 33, 37 and 41. This four-week introductory radiology elective allows students to rotate through four of the following radiology services: Emergency Radiology, Mammography, Pediatrics, Chest, Abdominal Imaging, Musculoskeletal, Neuroradiology, Interventional Radiology and Nuclear Medicine. The primary course objective is to familiarize students with the scope of diagnostic and interventional radiology including the consulting role radiologists provide to primary care and specialty providers, risks/benefits and cost effectiveness of radiologic examinations, and guidelines for ordering common studies as well as specific disease entities and their radiologic appearance and work-up. Students spend the majority of the day in the radiology reading rooms with residents, fellows, and faculty for interactive teaching based on daily clinical cases. Students will attend morning case-based conferences and noon didactic conferences with the residents. The students will have an observational role in conferences and in the clinical setting. At 3:00 p.m., students will convene with a radiology resident for a didactic lecture on a scheduled topic in radiology. An image-based quiz will be given in the final week of the elective covering topics presented in the daily student didactic lectures. Fridays at 3:00 p.m., students present an interesting case from the week in PowerPoint format. Two PowerPoint presentations will be submitted at the end of the rotation for grading. Reading lists, references and text books will be provided. The first and final days of the elective are mandatory. Grades are based on daily attendance, logbook, end of rotation quiz, and PowerPoint presentations. A failing grade will be awarded if a student is absent for more than five days of the rotation. Student time distribution: Inpatient 40%, Outpatient 30%, Conferences/Lectures 30%; Subspecialty Care 100%. Major teaching responsibility: Radiology faculty, fellows, and residents. Patients seen/weekly: N/A. On-call/weekend responsibility: None.


View Sections

M90 Radiol 740 Radiation Oncology Clerkship

The four-week clerkship in radiation oncology will provide students with the opportunity to participate in the evaluation and management of a broad range of patients referred for consideration of radiation therapy. Clerkship activities will take place entirely within the Barnes-Jewish Hospital/Siteman Cancer Center complex. Students will conduct patient evaluations under the supervision of radiation oncology department residents and faculty. Students will also attend and participate in regularly scheduled departmental conferences, which typically occur on a daily basis in the morning at 7 or 7:15 a.m. Monday-Thursday and 8 a.m. on Friday as well as on Thursday afternoons twice monthly. Students will also have the opportunity to attend the appropriate multidisciplinary clinics, follow-up clinics and multidisciplinary conferences (such as pediatric neuro-oncology, cardiothoracic oncology, lymphoma, GYN tumor conferences) pertaining to their rotation schedule. Instructional materials are available for students on the rotation (students are not expected to purchase any curricular materials for the clerkship). Student performance will be evaluated by both resident and faculty members who supervise the student over the course of the four-week clerkship.

Credit 154 units.


View Sections

M90 Radiol 801 General Radiology

Valid start weeks for four-week blocks are: Weeks 5, 9, 13, 17, 21, 25, 29, 33, 37 and 41. This four-week introductory radiology elective allows students to rotate through four of the following radiology services: Emergency Radiology, Mammography, Pediatrics, Chest, Abdominal Imaging, Musculoskeletal, Neuroradiology, Interventional Radiology and Nuclear Medicine. The primary course objective is to familiarize students with the scope of diagnostic and interventional radiology including the consulting role radiologists provide to primary care and specialty providers, risks/benefits and cost effectiveness of radiologic examinations, and guidelines for ordering common studies as well as specific disease entities and their radiologic appearance and work-up. Students spend the majority of the day in the radiology reading rooms with residents, fellows, and faculty for interactive teaching based on daily clinical cases. Students will attend morning case-based conferences and noon didactic conferences with the residents. The students will have an observational role in conferences and in the clinical setting. At 3:00 p.m., students will convene with a radiology resident for a didactic lecture on a scheduled topic in radiology. An image-based quiz will be given in the final week of the elective covering topics presented in the daily student didactic lectures. Fridays at 3:00 p.m., students present an interesting case from the week in PowerPoint format. Two PowerPoint presentations will be submitted at the end of the rotation for grading. Reading lists, references and text books will be provided. The first and final days of the elective are mandatory. Grades are based on daily attendance, logbook, end of rotation quiz, and PowerPoint presentations. A failing grade will be awarded if a student is absent for more than five days of the rotation. Student time distribution: Inpatient 40%, Outpatient 30%, Conferences/Lectures 30%; Subspecialty Care 100%. Major teaching responsibility: Radiology faculty, fellows, and residents. Patients seen/weekly: N/A. On-call/weekend responsibility: None.


View Sections

M90 Radiol 802 Advanced Radiology

Prerequisite: This course is available only to students who have completed the General Radiology Clerkship selective (M90 701) or the General Radiology elective (M90 801). This four-week sub-internship in radiology is intended for students who are interested in pursuing radiology as their intended career choice or have a special interest in a particular area of radiology pertinent to their intended career choice (e.g., fourth-year student going into neurosurgery who wants to spend time in neuroradiology). Students may tailor their experience to focus on one or more services if desired. This will be considered on a case by case basis by the course directors. This elective allows students to rotate through the following radiology services: Emergency Radiology, Mammography, Pediatrics, Chest, Abdominal Imaging, Musculoskeletal, Neuroradiology, Interventional Radiology and Nuclear Medicine. Students spend the majority of the day in the radiology reading rooms with residents, fellows and faculty for interactive teaching based on daily clinical cases. Students will attend morning case-based conferences and noon didactic conferences with the residents. The students will have an observational role in conferences and in the clinical setting. These returning students will be exempt from the end of rotation exam and attending the daily afternoon teaching sessions if they have previously completed M90 701 or M90 801; however, returning fourth-year students will be required to present weekly presentations with the students in the introductory course. Reading lists, references and text books will be provided. The first and final days of the elective are mandatory. Grades are based on daily attendance, faculty feedback, and PowerPoint presentations. No honors will be awarded if a student is absent for more than five days of the rotation.


View Sections

M90 Radiol 830 Interventional Radiology

Valid start weeks for four-week blocks are: Weeks 1, 5, 9, 13, 17, 21, 25, 29, 33, 37 and 41 Students will be exposed to all clinical and procedural aspects of interventional radiology including: patient evaluation and consultation, preparation of patients for procedures, performance of a wide range of vascular and nonvascular procedures, post-procedure patient management, and longitudinal patient follow-up. Students will actively participate in interventional procedures. Students will attend the departmental noon conference (daily) and section conferences including didactic lectures, morbidity and mortality conference, and case conferences (3-4 times per week).


View Sections

M90 Radiol 840 Clinical Radiation Oncology

Valid start weeks for four-week blocks are: Weeks 1, 5, 9, 13, 17, 21, 25, 29, 33, 37 and 41. The clinical division offers an elective with emphasis on the evaluation, planning of and administration of radiation therapy in patients with malignant tumors. The students have the opportunity to enhance their knowledge on the natural history, pathological, and biological features of cancer and to sharpen their clinical skills participating in the management of these patients.


View Sections

M90 Radiol 842 Thoracic Imaging
A four-week elective emphasizing the interactions between cardiothoracic radiologists and the various clinical services, to include thoracic surgery, thoracic oncology, and pulmonary medicine. Learn to read chest radiographs at the viewing console while providing liaison with the clinical teams. This active elective will include the daily chest teaching conference and participation in a weekly pulmonary case conference (Stuart Sagel conference), thoracic surgery, thoracic oncology conferences, as well as the imaging aspects of the clinico-pathological medicine conference. Learn to identify subtle pneumothorax and pneumonia. Learn the limitations of portable chest radiographs. Rotating on cardiac CT and MR service and in the ED service, if interested. The student will be expected to present a single case from what they have seen during the rotation at a 7 a.m. teaching conference.


M90 Radiol 900 Research Elective-Radiology

Research opportunities may be available. If interested, please contact the departments of Radiology or Radiation Oncology.


View Sections