Mathematics

Mathematics has always held a central position in the liberal arts, and over time it has also come to play an important role in more and more aspects of our lives. Mathematical analysis and modeling are involved in many areas, far beyond the traditional association of mathematics with the physical sciences and engineering. This fact is reflected in the diversity of the students who study at least some mathematics during their time at Washington University — students who recognize the importance of quantitative skills in a world that becomes more and more technological.

Students major in mathematics for many reasons. Some are planning academic careers in mathematics that involve teaching or research. Others plan to work as actuaries or at other jobs in industry or government. Some plan careers in secondary education. Many majors do not intend to become “mathematicians” at all, but simply realize that quantitative training is a valuable asset in many kinds of careers; often, work in mathematics is meant to complement their study in other areas. Still other majors just view mathematics as an interesting concentration in their liberal arts education, even though they plan to enter professional fields such as medicine or law.

The mathematics program gives majors and minors a broad introduction to the subject. Majors choose among several tracks to complete their study; these tracks add different emphases to their programs, reflecting individual interests or professional goals. Majors are encouraged to complete additional work (perhaps even a minor or second major) in other related areas.

Contact Person: Ronald Freiwald
Phone: 314/935-6737
E-mail: rf@math.wustl.edu
Departmental website: http://wumath.wustl.edu

Chair and Professor
David Wright
PhD, Columbia University

Endowed Professors
John McCarthy
Spencer T. Olin Professor of Mathematics
PhD, University of California–Berkeley

Guido Weiss
Elinor Anheuser Professor of Mathematics
PhD, University of Chicago

Professors
Quo-Shin Chi
PhD, Stanford University

Renato Feres
PhD, California Institute of Technology

Ronald Freiwald
PhD, University of Rochester

Steven Krantz
PhD, Princeton University

Mohan Kumar Neithalath
PhD, Bombay University

Rachel Roberts
PhD, Cornell University

John Shareshian
PhD, Rutgers University

Edward L. Spitznagel
PhD, University of Chicago

Victor Wickerhauser
PhD, Yale University

Associate Professors
Roya Beheshti
PhD, Massachusetts Institute of Technology

Brian Blank
PhD, Cornell University

Jimin Ding
PhD, University of California–Davis

Matthew Kerr
PhD, Princeton University

Nan Lin
PhD, University of Illinois

Jack Shapiro
PhD, City University of New York

Xiang Tang
PhD, University of California–Berkeley

Assistant Professors
Gregory Knese
PhD, Washington University

Todd Kuffner
PhD, Imperial College London

Ari Stern
PhD, California Institute of Technology

Instructors
Songhao Li
PhD, University of Toronto

Peter Luthy
PhD, Cornell University
The Major in Mathematics

Total units required: 31–34

All mathematics majors are required to complete

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 131</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>Math 132</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>Math 233</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>Total units</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

In addition, each major is required to complete the courses in one of the following five tracks and to complete a departmental exit interview shortly before graduation.

Traditional

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 3200</td>
<td>Elementary to Intermediate Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or Math 493</td>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>Math 310</td>
<td>Foundations for Higher Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Math 4111</td>
<td>Introduction to Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Math 4121</td>
<td>Introduction to Lebesgue Integration</td>
<td>3</td>
</tr>
<tr>
<td>Math 429</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Math 430</td>
<td>Modern Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Plus two additional</td>
<td>upper-level mathematics electives (possibly Math 308, Math 309 or Math 318)</td>
<td></td>
</tr>
<tr>
<td>Total 24 upper-level</td>
<td>mathematics units</td>
<td></td>
</tr>
</tbody>
</table>

Probability/Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 131</td>
<td>Computer Science I</td>
<td>3</td>
</tr>
<tr>
<td>or CSE 200</td>
<td>Engineering and Scientific Computing</td>
<td></td>
</tr>
<tr>
<td>Math 309</td>
<td>Matrix Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Math 3200</td>
<td>Elementary to Intermediate Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Math 310</td>
<td>Foundations for Higher Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Math 318</td>
<td>Introduction to Calculus of Several Variables</td>
<td>3</td>
</tr>
<tr>
<td>or Math 308</td>
<td>Mathematics for the Physical Sciences</td>
<td></td>
</tr>
<tr>
<td>Math 493 & Math 494</td>
<td>Probability and Mathematical Statistics</td>
<td>6</td>
</tr>
<tr>
<td>One additional upper-level probability or statistics elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 21 upper-level mathematics units

Applied

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 117A</td>
<td>General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>& Physics 118A</td>
<td>and General Physics II</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics 197</td>
<td>Physics I</td>
<td>3</td>
</tr>
<tr>
<td>& Physics 198</td>
<td>and Physics II</td>
<td></td>
</tr>
<tr>
<td>OR two computer science courses chosen from CSE 131, CSE 132, CSE 200, CSE 241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math 217</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Math 309</td>
<td>Matrix Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Math 3200</td>
<td>Elementary to Intermediate Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or Math 493</td>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>Math 310</td>
<td>Foundations for Higher Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Math 318</td>
<td>Introduction to Calculus of Several Variables</td>
<td>3</td>
</tr>
<tr>
<td>or Math 308</td>
<td>Mathematics for the Physical Sciences</td>
<td></td>
</tr>
<tr>
<td>Math 449 & Math 450</td>
<td>Numerical Applied Mathematics and Topics in Applied Mathematics</td>
<td>6</td>
</tr>
<tr>
<td>One additional upper-level mathematics elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total 21 upper-level mathematics units

Mathematics for Secondary Education

(also requires a major in Secondary Education)

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 131</td>
<td>Computer Science I</td>
<td>3</td>
</tr>
<tr>
<td>or CSE 200</td>
<td>Engineering and Scientific Computing</td>
<td></td>
</tr>
<tr>
<td>Math 309</td>
<td>Matrix Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Math 3200</td>
<td>Elementary to Intermediate Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or Math 493</td>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>Math 310</td>
<td>Foundations for Higher Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Math 318</td>
<td>Introduction to Calculus of Several Variables</td>
<td>3</td>
</tr>
<tr>
<td>or Math 308</td>
<td>Mathematics for the Physical Sciences</td>
<td></td>
</tr>
</tbody>
</table>
Math 302 Elementary Geometry From an Advanced Point of View 3
Math 331 Algebraic Systems 3
One additional upper-level mathematics elective

Total 21 upper-level mathematics units

Mathematics (Economics Emphasis)

Four economics courses:
- Econ 1011 Introduction to Microeconomics 3
- Econ 1021 Introduction to Macroeconomics 3
- Econ 413 Introduction to Econometrics 3

AND either
- Econ 4011 Intermediate Microeconomic Theory 3
- or Econ 4021 Intermediate Macroeconomic Theory

And:
- Math 309 Matrix Algebra 3
- Math 3200 Elementary to Intermediate Statistics and Data Analysis 3
- or Math 493 Probability
- Math 310 Foundations for Higher Mathematics 3
- Math 4111 Introduction to Analysis 6
 & Math 4121 and Introduction to Lebesgue Integration

Two additional upper-level mathematics from among:
- Math 318 Introduction to Calculus of Several Variables 3
- Math 429 Linear Algebra 3
- Math 456 Topics in Financial Mathematics 3
- or any 400-level statistics course

Total 21 upper-level mathematics units

Notes

1. Upper-level mathematics courses are those numbered 300 or higher. A course with a lower number does not count toward upper-level mathematics requirements even if it is cross-listed as an upper-level course in another department or program: for example, if Math 2200 were cross-listed by another department as 3**, then registering for that course would not satisfy an upper-level mathematics requirement.

2. All required courses (both upper- and lower-level) must be completed with a grade of C− or better.

3. Math 318 Introduction to Calculus of Several Variables and Math 308 Mathematics for the Physical Sciences cannot both be used to fulfill major requirements.

4. Courses transferred from other accredited colleges and universities with department approval can be counted. However,

- courses transferred from a two-year college (such as a community college) cannot be used to satisfy upper-level requirements;
- at least half the upper-level units required in a major must be earned at Washington University or in a Washington University-approved Overseas Study Program.

5. Courses from University College cannot be used to fulfill major requirements.

6. At most 3 units for independent study or research work can count toward the major requirements.

7. At least 18 of the required upper-level units in a major must be satisfied using courses not double-counted toward the requirements of any other major or minor program.

8. Certain approved substitutions are found at the Undergraduate link on the department's web page at http://wumath.wustl.edu. However, in all cases, at most one substitution can be used that involves a course not home-based in the Department of Mathematics.

Additional Information

Independent Study: Majors with a plan for independent work or a research project may apply for independent study with a faculty member. Majors are encouraged (but not required) to consider a senior project or an honors project.

Graduation with Awards for Distinction or Latin Honors:

The department offers the awards Distinction in Mathematics, High Distinction in Mathematics, and Highest Distinction in Mathematics. Recommendations for students to receive Latin Honors (which are awarded by the College of Arts & Sciences, not the department) are keyed to the requirements for the Distinction Awards, as indicated below. In these requirements, “regularly scheduled mathematics course” refers to a course that is home-based in the Mathematics Department (L24) and is not an independent study or research course.

- **Core Course Work for All Distinction Awards (Core Course Work alone earns no award)**
 a) at least 3.65 GPA in upper-level mathematics (L24) courses
 b) completion with grades of B or better (not B−) of
 i) one of the course sequences Math 4111-4121, 429-430, 493-494, 449-450
 and ii) three additional 400-500 level regularly scheduled mathematics courses.

- **Distinction in Mathematics. Awarded for Core Course Work plus**
a) completion of one additional regularly scheduled mathematics course at the 400-500 level with grade of B or better (not B–), or

b) passing the first actuarial exam (P1) from Society of Actuaries

• High Distinction in Mathematics. Awarded for Core Course Work plus satisfactory completion of an honors thesis. Details about honors theses are available on the department’s web page.

• Highest Distinction in Mathematics. Awarded for Core Course Work plus satisfactory completion of an honors thesis plus either:

 a) course work includes completion of at least one of the graduate sequences Math 5021-5022, 5031-5032, 5041-5042(3), 5051-5052, 5061-5062 and passing the graduate qualifying exam for that course sequence, or

 b) course work includes all the requirements for the department’s Honors Program in Statistics.

• Latin Honors. For majors in the College of Arts & Sciences, the department will recommend that the AB degree be awarded with Latin Honors if the student has the overall GPA of 3.65 required by the College and has earned the department award of High or Highest Distinction. These majors should apply to the Department for admission to Candidacy for Latin Honors by the end of their junior year. The level of Latin Honors (summa cum laude, magna cum laude or cum laude) is determined by the College as described in the Arts & Sciences Academic Honors and Awards section of this Bulletin.

More details are available on the department’s web page.

Note: Students who entered Washington University before fall 2011 should click the menu item Prior Bulletins on the left to review the College’s requirements that were in place for the appropriate year of matriculation and visit the department’s web page for the older departmental requirements.

Study Abroad: Students interested in an intensive semester or year abroad studying mathematics should consider the Budapest Semesters in Mathematics Program.

The Minor in Mathematics

Units required: 24

Required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 131</td>
<td>Computer Science I</td>
<td>3</td>
</tr>
<tr>
<td>or CSE 200</td>
<td>Engineering and Scientific Computing</td>
<td></td>
</tr>
<tr>
<td>Math 131</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>Math 132</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>Math 233</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>Math 309</td>
<td>Matrix Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Math 318</td>
<td>Introduction to Calculus of Several Variables</td>
<td>3</td>
</tr>
</tbody>
</table>

or Math 308 Mathematics for the Physical Sciences 3

Math 3200 Elementary to Intermediate Statistics and Data Analysis 3

One additional elective Mathematics course numbered 300 or above 3

Total units 24

Additional Information

1. All required courses (both upper- and lower-level) must be completed with a letter grade of C– or better.

2. Math 318 (p. 1) and Math 308 (p. 1) cannot both be used to fulfill minor requirements.

3. Courses transferred from a two-year college (such as a community college) cannot count as upper-level courses toward the minor.

4. University College courses cannot count to fulfill minor requirements.

5. At least 6 of the required upper-level units required in a minor must be earned at Washington University or in a Washington University-approved Overseas Study Program.

6. At least 6 of the required upper-level units required must be satisfied using courses not double-counted toward the requirements of any other major or minor program.

7. At least three of the four upper-level courses required in the minor must be courses “home-based” in the Math Department; one approved course from another department may be substituted. Approved substitutions can be found on the department web page.

L24 Math 100 Foundations for Calculus

A limited enrollment class for students planning to take calculus but who need additional precalculus preparation. The course aims to build both the technical skills and the conceptual understanding needed to succeed in calculus. Course emphasizes links between the graphical, numeric and algebraic viewpoints. A variety of approaches are used to present the material. Prerequisites: two years of high school algebra and a course in geometry (or the equivalent).

Credit 3 units. A&S: NS A&S: IQ, NSM: FA: NSM

L24 Math 101 Introduction to Statistics

Basic concepts of statistics. Data collection (sampling, designing experiments), data organization (tables, graphs, frequency distributions, numerical summarization of data), statistical inference (elementary probability and hypothesis testing). Prerequisite: two years of high school algebra.

Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN FA: NSM

L24 Math 109 Mathematics and Music

An elementary introduction to the connections between mathematics and musical sound. Review of integers, ratios, prime numbers, functions, rationality, exponents, logarithms,

Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN FA: NSM

L24 Math 131 Calculus I
Derivatives of algebraic, trigonometric and transcendental functions, techniques of differentiation, Mean Value Theorem, applications of the derivative. The definite integral and Fundamental Theorem of Calculus. Areas. Simpler integration techniques. Prerequisites: high-school algebra and precalculus, including trigonometry.

Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN FA: NSM

L24 Math 132 Calculus II
Continuation of Math 131. A brief review of the definite integral and Fundamental Theorem of Calculus. Techniques of integration, applications of the integral, sequences and series, Taylor polynomials and series, and some material on differential equations. Prerequisite: Math 131 or a B or better in a one-year high school calculus course, or permission of the department.

Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN FA: NSM

L24 Math 201 Freshman Seminar: How Mathematics Thinks: Multivariable Calculus
An introduction to multivariable calculus covering most of the material in Math 233 but at a greater level of rigor. For purposes of major requirements, this course can replace Math 233 Calculus III. Enrollment limited to 15. Open only to freshmen with a score of 5 on the AP Calculus Exam (BC version). However, some students with this score may nevertheless be better served by Math 233. Consultation with the department or instructor recommended before enrolling. Students cannot receive credit for both Math 201 and Math 233.

Credit 4 units. A&S: NS, QA A&S: IQ, NSM, AN

L24 Math 207 Differential Equations
Introduction to ordinary differential equations: first-order equations, linear equations, systems of equations, series solutions, Laplace transform methods, numerical solutions. Prerequisite: Math 233 (or Math 233 concurrently).

Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN FA: NSM

L24 Math 220 Finite Mathematics
Topics selected from number theory, combinatorics and graph theory. Methods of proof and practical applications: for example, calendars, scheduling, communications, encryption. Prerequisite: high school algebra.

Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN FA: NSM

L24 Math 2200 Elementary Probability and Statistics
An introduction to probability and statistics. Discrete and continuous random variables, mean and variance, hypothesis testing and confidence limits, nonparametric methods, Student's t, analysis of variance, regression and contingency tables. Graphing calculator with statistical distribution functions (such as the TI-83) may be required. Prerequisite: Math 131.

Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN FA: NSM

L24 Math 2233 Calculus III
Multivariable calculus. Topics include differential and integral calculus of functions of two or three variables: vectors and curves in space, partial derivatives, multiple integrals, line integrals, vector calculus at least through Green’s Theorem. Prerequisite: Math 132 or a score of 4-5 on the Advanced Placement Calculus Exam (BC version).

Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN FA: NSM

L24 Math 266 Math for Elementary School Teachers
A review of elementary school mathematics at a level beyond its usual presentation in the schools. Applications of all concepts are given in abundance. Restricted to majors in Elementary Education. Prerequisite: two years of high school mathematics.

Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN FA: NSM

L24 Math 302 Elementary Geometry From an Advanced Point of View
A rigorous modern treatment of Euclidean geometry and an introduction to non-Euclidean geometry. Prerequisite: Math 310 or permission of instructor.

Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 308 Mathematics for the Physical Sciences
Continuation of Math 233 emphasizing topics of interest in the physical sciences. Topics in multivariable and vector calculus (div, grad, curl); line, surface integrals and connections to electromagnetism; Fourier series and integrals; boundary value problems (diffusion and wave equations); additional topics if time permits. Students may not receive credit toward a math major or minor for both Math 308 and Math 318. Prerequisite: Math 233 or permission of instructor.

Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM
L24 Math 309 Matrix Algebra
An introductory course in linear algebra that focuses on Euclidean n-space, matrices and related computations. Topics include: systems of linear equations, row reduction, matrix operations, determinants, linear independence, dimension, rank, change of basis, diagonalization, eigenvalues, eigenvectors, orthogonality, symmetric matrices, least square approximation, quadratic forms. Introduction to abstract vector spaces. Prerequisite: Math 132. Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN FA: NSM

L24 Math 310 Foundations for Higher Mathematics
Introduction to the rigorous techniques used in more advanced mathematics. Topics include postpositional logic, use of quantifiers, set theory, methods of proof and disproof (counterexamples), foundations of mathematics. Use of these tools in the construction of number systems and in other areas such as elementary number theory, combinatorial arguments and elementary proofs in analysis. Prerequisite: Math 233. Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 310W Foundations for Higher Mathematics with Writing
See the description for Math 310. Math 310W is a writing-intensive version of Math 310. Students participate in the regular Math 310 lectures and are responsible for all the exams and assignments associated with Math 310. Students in Math 310W have one additional meeting each week to deal with writing issues. At least three papers (four to five pages in length) are required, each with at least one revision. Prerequisite: Math 233 or permission of instructor. Credit 4 units. A&S: NS, WI A&S: IQ, NSM, WI

L24 Math 312 Differential Equations and Dynamical Systems
Qualitative theory of ordinary differential equations. Picard’s existence and uniqueness theorem, the phase plane, Poincare-Bendixon theory, stationary points, attractors and repellors, graphical methods. Physical applications, including chaos, are indicated. Prerequisite: Math 217. Credit 3 units. A&S: NS FA: NSM

L24 Math 318 Introduction to Calculus of Several Variables
Selected topics for functions of several variables involving some matrix algebra and presented at a level of rigor intermediate between that of Calculus III and higher-level analysis courses. Students may not receive credit toward a mathematics major or minor for both Math 308 and 318. Prerequisites: Math 233 and Math 309. Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 3200 Elementary to Intermediate Statistics and Data Analysis
An introduction to probability and statistics. Discrete and continuous random variables, mean and variance, hypothesis testing and confidence limits, Bayesian inference, nonparametric methods, Student’s t, contingency tables, multifactor analysis of variance, fixed effects, random effects, mixed models, multiple regression, maximum likelihood and logistic regression. Graphing calculator with Z, t, chi-square and F distribution functions (such as the TI-83 series) may be required. Calculus and the SAS software package are both used in an essential way. Prerequisite: Math 233 or permission of the instructor. Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN

L24 Math 322 Biostatistics
A second course in elementary statistics with applications to life sciences and medicine. Review of basic statistics using biological and medical examples. New topics include incidence and prevalence, medical diagnosis, sensitivity and specificity, Bayes’ rule, decision making, maximum likelihood, logistic regression, ROC curves and survival analysis. Prerequisites: Math 3200, or a strong performance in Math 2200 and permission of the instructor. Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 331 Algebraic Systems
Polynomials, binomial expansions, factoring, rings (integers and polynomials), unique factorization and other topics relevant to the high school curriculum. Designed for future secondary school teachers and other students looking for a course in algebra at a less abstract level than Math 430. Prerequisite: Math 310 or permission of instructor. Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 3351 Elementary Theory of Numbers
Divisibility properties of integers, congruences, quadratic reciprocity, Diophantine equations. Introduction to continued fractions and a brief discussion of public key cryptography. Prerequisite: Math 310 or permission of instructor. Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 350 Topics in Applied Mathematics
Topics change with each offering of the course. Past topics have included “Mathematics and Multimedia,” “The Mathematics and Chemistry of Reaction-Diffusion Systems,” “Mathematical Biology,” “Simulation Analysis of Random Processes” and “Introduction to Monte Carlo Methods.” Prerequisites vary, but always include at least Math 233 and usually Math 309. Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM
L24 Math 370 Introduction to Combinatorics
Basics of enumeration (combinations, permutations and
enumeration of functions between finite sets), generating
functions; the inclusion-exclusion principle, partition theory
and introductory graph theory. As time permits, additional
topics may include Ramsey’s Theorem, probabilistic methods
in combinatorics and algebraic methods in combinatorics.
Prerequisites: Math 132, 309 and 310, or permission of the
instructor.
Credit 3 units. A&S: NS, QA A&S: IQ, NSM, AN

L24 Math 371 Graph Theory
Introduction to graph theory including the basic definitions and
theorems and some more advanced topics that drive much
current research in graph theory: Ramsey’s Theorem, random
graph theory and, if time permits, Szemeredi’s regularity lemma.
Graphs are studied as abstract objects; however, graph theory
is also of interest to applied mathematicians because graphs are
natural models for networks (social, electric). Prerequisite: Math
310 or a roughly equivalent course, or permission of instructor.
Students should know what a proof is and how to produce
one. Some informal understanding of probability is helpful, but
students need not have taken a probability course.
Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 400 Undergraduate Independent Study
Approval of instructor required.
Credit variable, maximum 3 units.

L24 Math 403C Mathematical Logic I
A first course in mathematical logic, an introduction to both proof
theory and model theory. The structure and properties of first-
order logic are studied in detail, with attention to such notions
as axiomatic theory, proof, model, completeness, compactness
and decidability. Prerequisite: Phil 301G or equivalent, or a
background in mathematics.
Same as Phil 403
Credit 3 units. A&S: TH A&S: IQ, HUM BU: HUM FA: SSP

L24 Math 404C Mathematical Logic II
Gödel’s Incompleteness Theorem: its proof, its consequences,
its reverberations. Prerequisite: Phil 403 or a strong background
in mathematics.
Same as Phil 404
Credit 3 units. A&S: TH A&S: IQ, HUM FA: SSP

L24 Math 407 An Introduction to Differential Geometry
A study of properties of curves and surfaces in 3-dimensional
Euclidean space. The course is essentially a modern recounting
of a seminal paper of Gauss. Prerequisites: Math 233 and Math
309.

L24 Math 408 Nonparametric Statistics
Statistical methods that make few or no assumptions about
the data distribution. Permutation tests of different types;
nonparametric confidence intervals and correlation coefficients;
jackknife and bootstrap resampling; nonparametric regressions.
If there is time, topics chosen from density estimation and kernel
regression. Short computer programs are written in a language
such as R or C. Prerequisites: Math 3200 and Math 493, or
permission of instructor.
Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 410 Introduction to Fourier Series and Integrals
The basic theory of Fourier series and Fourier integrals including
different types of convergence. Applications to certain differential
equations. Prerequisites: Math 233 and Math 309.
Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 4111 Introduction to Analysis
The real number system and the least upper-bound
property; metric spaces (completeness, compactness
and connectedness); continuous functions (in R^n; on
compact spaces; on connected spaces); C(X) (pointwise and
uniform convergence; Weierstrass approximation theorem);
differentiation (mean value theorem; Taylor’s theorem); the
contraction mapping theorem; the inverse and implicit function
theorems. Prerequisite: Math 310 or permission or instructor.
Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 4121 Introduction to Lebesgue Integration
Riemann integration; measurable functions; measures;
Lebesgue measure; the Lebesgue integral; integrable functions;
L^p spaces; modes of convergence; decomposition of measures;
product measures. Prerequisite: Math 4111 or permission of the
instructor.
Credit 3 units. A&S: NS QA A&S: IQ, NSM

L24 Math 415 Partial Differential Equations
Introduction to the theory of PDE’s with applications to selected
classical problems in physics and engineering. Linear and
quasilinear first-order equations, derivation of some of the
classical PDE’s of physics, and standard solution techniques
for boundary and initial value problems. Preliminary topics such
as orthogonal functions, Fourier series and variational methods
introduced as needed. Prerequisites: Math 217 and Math 309, or
permission of instructor.
Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 416 Complex Variables
Analytic functions, elementary functions and their properties, line
integrals, the Cauchy integral formula, power series, residues,
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Prerequisites</th>
<th>Credit Units</th>
<th>A&S:</th>
<th>NS:</th>
<th>A&S: IQ</th>
<th>NSM: FA: NSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>L24 Math 417</td>
<td>Topology I</td>
<td>An introduction to the most important ideas of topology. Course includes necessary ideas from set theory, topological spaces, subspaces, products and quotients, compactness and connectedness. Some time is also devoted to the particular case of metric spaces (including topics such as separability, completeness, completions, the Baire Category Theorem, and equivalents of compactness in metric spaces). Prerequisite: Math 4111 or permission of instructor.</td>
<td>Math 417. May include some algebraic topology (depending on material covered in 417). Prerequisite: Math 417.</td>
<td>3</td>
<td>NS</td>
<td>A&S</td>
<td>NS: IQ</td>
<td>NSM: FA: NSM</td>
</tr>
<tr>
<td>L24 Math 418</td>
<td>Introduction to Topology and Modern Analysis II</td>
<td>A continuation of Math 417 featuring more advanced topics in topology. The content may vary with each offering. Prerequisite: Math 4171, or permission of instructor.</td>
<td></td>
<td>3</td>
<td>NS</td>
<td>A&S</td>
<td>NS: IQ</td>
<td>NSM: FA: NSM</td>
</tr>
<tr>
<td>L24 Math 420</td>
<td>Experimental Design</td>
<td>A first course in the design and analysis of experiments, from the point of view of regression. Factorial, randomized block, split-plot, Latin square and similar design. Prerequisite: Math 3200 or permission of instructor.</td>
<td>Math 3200 or a course in linear algebra (such as Math 309 or Math 429), or permission of the instructor.</td>
<td>3</td>
<td>NS</td>
<td>A&S</td>
<td>NS: IQ</td>
<td>NSM: FA: NSM</td>
</tr>
<tr>
<td>L24 Math 429</td>
<td>Linear Algebra</td>
<td>Introduction to the linear algebra of finite-dimensional vector spaces. Includes systems of equations, matrices, determinants, inner product spaces, spectral theory. Prerequisite: Math 310 or permission of instructor. Math 309 is not an explicit prerequisite but students already should be familiar with such basic topics from matrix theory as matrix operations, linear systems, row reduction and Gaussian elimination. Material on these topics in early chapters of the text are covered very quickly.</td>
<td>Math 309 or Math 3200 or permission of the instructor.</td>
<td>3</td>
<td>NS</td>
<td>QA</td>
<td>A&S: IQ</td>
<td>NSM: FA: NSM</td>
</tr>
<tr>
<td>L24 Math 430</td>
<td>Modern Algebra</td>
<td>Introduction to groups, rings and fields. Includes permutation groups, group and ring homomorphisms, field extensions, connections with linear algebra. Prerequisite: Math 429 or permission of the instructor.</td>
<td>Math 429 or Math 3200 or permission of the instructor.</td>
<td>3</td>
<td>NS</td>
<td>A&S</td>
<td>NS: IQ</td>
<td>NSM: FA: NSM</td>
</tr>
<tr>
<td>L24 Math 434</td>
<td>Survival Analysis</td>
<td>Life table analysis and testing; mortality and failure rates; Kaplan-Meier or product-limit estimators, hypothesis testing and estimation in the presence of random arrivals and departures; and the Cox proportional hazards model. Techniques of survival analysis are used in medical research, industrial planning and the insurance industry. Prerequisites: Math 309 and Math 3200, or permission of the instructor.</td>
<td></td>
<td>3</td>
<td>NS</td>
<td>A&S</td>
<td>NS: IQ</td>
<td>NSM: FA: NSM</td>
</tr>
<tr>
<td>L24 Math 435</td>
<td>Number Theory and Cryptography</td>
<td>The course covers many of the basics of elementary number theory, providing a base from which to approach modern algebra, algebraic number theory and analytic number theory. It also introduces one of the most important real-world applications of mathematics, namely the use of number theory and algebraic geometry in public key cryptography. Topics from number theory involve divisibility (Euclidean algorithm, primes, Fundamental Theorem of Arithmetic), congruences (modular arithmetic, Chinese Remainder Theorem, primality testing and factorization). Topics from cryptography include RSA encryption, Diffie-Hellman key exchange and elliptic curve cryptography. Topics about algebraic numbers may be include if time permits. Prerequisites: Math 233, 309 and 310 (or permission of instructor.</td>
<td>Math 233, Math 318, Math 429 and Math 430, or permission of the instructor.</td>
<td>3</td>
<td>NS</td>
<td>A&S</td>
<td>NS: IQ</td>
<td>NSM: FA: NSM</td>
</tr>
<tr>
<td>L24 Math 436</td>
<td>Algebraic Geometry</td>
<td>Introduction to affine and projective algebraic varieties; the Zariski topology; regular and rational mappings; simple and singular points; divisors and differential forms; genus; the Riemann-Roch theorem. Prerequisites: Math 318, Math 429 and Math 430, or permission of the instructor.</td>
<td></td>
<td>3</td>
<td>NS</td>
<td>A&S</td>
<td>NS: FA</td>
<td>NSM: FA: NSM</td>
</tr>
<tr>
<td>L24 Math 439</td>
<td>Linear Statistical Models</td>
<td>Theory and practice of linear regression, analysis of variance (ANOVA) and their extensions, including testing, estimation, confidence interval procedures, modeling, regression diagnostics and plots, polynomial regression, collinearity and confounding, model selection, geometry of least squares, etc. The theory is approached mainly from the frequentist perspective, and use of the computer (mostly R) to analyze data is emphasized. Prerequisite: Math 3200 and a course in linear algebra (such as Math 309 or Math 429), or permission of instructor.</td>
<td>Math 3200 and a course in linear algebra (such as Math 309 or Math 429), or permission of the instructor.</td>
<td>3</td>
<td>NS</td>
<td>A&S</td>
<td>NS: IQ</td>
<td>NSM: FA: NSM</td>
</tr>
<tr>
<td>L24 Math 439</td>
<td>Advanced Linear Statistical Models</td>
<td>Review of basic linear models relevant for the course; generalized linear models including logistic and Poisson regression (heterogeneous variance structure, quasilikelihood); linear mixed-effects models (estimation of variance components,</td>
<td></td>
<td>3</td>
<td>NS</td>
<td>A&S</td>
<td>NS: IQ</td>
<td>NSM: FA: NSM</td>
</tr>
</tbody>
</table>
maximum likelihood estimation, restricted maximum likelihood, generalized estimating equations), generalized linear mixed-effects models for discrete data, models for longitudinal data, optional multivariate models as time permits. The computer software R is used for examples and homework problems. Implementation in SAS is mentioned for several specialized models. Prerequisites: Math 439 and a course in linear algebra (such as Math 309 or Math 429), or consent of instructor. Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 449 Numerical Applied Mathematics
Computer arithmetic, error propagation, condition number and stability; mathematical modeling, approximation and convergence; roots of functions; calculus of finite differences; implicit and explicit methods for initial value and boundary value problems; numerical integration; numerical solution of linear systems, matrix equations and eigensystems; Fourier transforms; optimization. Various software packages may be introduced and used. Prerequisites: CSE 200 or CSE 131 (or other computer background with permission of the instructor); Math 217 and Math 309. Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 450 Topics in Applied Mathematics
Topic may vary with each offering of the course. Prerequisite: Math 449 or permission of the instructor. Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 456 Topics in Financial Mathematics
An introduction to the principles and methods of financial mathematics, with a focus on discrete-time stochastic models. Topics include no-arbitrage pricing of financial derivatives, risk-neutral probability measures, the Cox-Ross-Rubenstein and Black-Scholes-Merton options pricing models, and implied volatility. Prerequisites: Math 233 and Math 3200 or permission of instructor. Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 459 Bayesian Statistics
Introduces the Bayesian approach to statistical inference for data analysis in a variety of applications. Topics include: comparison of Bayesian and frequentist methods, Bayesian model specification, choice of priors, computational methods such as rejection sampling, and stochastic simulation (Markov chain Monte Carlo), empirical Bayes method, hands-on Bayesian data analysis using appropriate software. Prerequisite: Math 493 and either Math 3200 or Math 494; or permission of the instructor. Some programming experience may also be helpful (consult with the instructor). Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 460 Multivariate Statistical Analysis
Review of basic random vectors and linear algebra relevant for the course; sample mean, variance and correlation as matrix operations and their geometric interpretation; multivariate normal distributions; sampling distributions and properties of sample mean and variance; Hotelling's T^2 and likelihood ratio tests; one-way MANOVA; two-way MANOVA; multivariate regression models; principal components analysis; factor analysis; discrimination and classification; clustering and grouping. The computer software R is used for examples and homework problems. Implementation in SAS is mentioned for several specialized analyses. Prerequisite: Math 493, Math 439, and a course in linear algebra (e.g., Math 309 or Math 429), or consent of instructor. Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 470 Graph Theory
Graph theory entails aspects of counting theory, combinatorics, algebra, geometry and even some analysis. This course presents many of the most basic concepts and then develops several modern applications. Topics include fundamental results and uses of graphs, Euler’s theorem, the adjacency matrix, eigenvalues and the Laplacian, isoperimetric problems, paths and flows, randomness in graphs, symmetric graphs, subgraphs, Harnack inequalities, Sobolev inequalities. Prerequisites Math 310 and Math 318 (or equivalent background with permission of the instructor). Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 475 Statistical Computation
An introduction to programming in SAS (Statistical Analysis System) and applied statistics using SAS: contingency tables and Mantel-Haenszel tests; general linear models and matrix operations; simple, multilinear and stepwise regressions; ANOVAs with nested and crossed interactions; ANOVAs and regressions with vector-valued data (MANOVAs). Topics chosen from discriminant analysis, principal components analysis, logistic regression, survival analysis and generalized linear models. Prior acquaintance with SAS at the level introduced in Math 3200 is assumed. Prerequisites: Math 3200 and Math 493 (or Math 494 concurrently), or permission of instructor. Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 481 Group Representations
Ideas and techniques in representation theory of finite groups and Lie groups. Credit 3 units. A&S: NS

L24 Math 493 Probability
Mathematical theory and application of probability at the advanced undergraduate level; a calculus-based introduction to probability theory. Topics include the computational basics of probability theory, combinatorial methods, conditional probability
including Bayes’ theorem, random variables and distributions, expectations and moments, the classical distributions, and the central limit theorem. Prerequisites: Math 318 or Math 308 and permission of the instructor.
Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 494 Mathematical Statistics
Theory of estimation, minimum variance and unbiased estimators, maximum likelihood theory, Bayesian estimation, prior and posterior distributions, confidence intervals for general estimators, standard estimators and distributions such as the Student-t and F-distribution from a more advanced viewpoint, hypothesis testing, the Neymann-Pearson Lemma (about best possible tests), linear models, and other topics as time permits. Prerequisites: Math 3200 and Math 493, or permission of the instructor.
Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 495 Stochastic Processes
Content varies with each offering of the course. Past offerings have included such topics as random walks, Markov chains, Gaussian processes, empirical processes, Markov jump processes and a short introduction to martingales, Brownian motion and stochastic integrals. Prerequisites: Math 318 and Math 493, or permission of instructor.
Credit 3 units. A&S: NS A&S: IQ, NSM FA: NSM

L24 Math 496 Topics in Statistics
Topic varies with each offering.
Credit 3 units. A&S: NS FA: NSM

L24 Math 496A Topics in Algebra
Topic varies with each offering.
Credit 3 units. A&S: NS A&S: IQ, NSM

L24 Math 499 Study for Honors
Prerequisites: junior or senior standing, eligibility for honors work in mathematics and permission of the department’s Director of Undergraduate Studies.
Credit 3 units. FA: NSM