About Energy, Environmental & Chemical Engineering

Our department focuses on environmental engineering, energy systems engineering and chemical engineering. We provide integrated and multidisciplinary programs of scientific education. Our mission is accomplished by: instilling a tradition of "lifelong learning"; a curriculum of fundamental education coupled with applications in advanced focal areas and strengthened by our breadth in other disciplinary areas; participation in cutting-edge research with faculty and industrial partners; and access to state-of-the-art facilities and instrumentation. Most undergraduate students in the department pursue the BS in Chemical Engineering degree, accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org). Other students pursue the BS in Applied Science degree with a major in chemical engineering. The department offers a minor in environmental engineering science and, in collaboration with other engineering departments, we co-sponsor a minor in energy engineering and a minor in nanoscale science and engineering. Graduate degrees (Master of Engineering and Doctor of Philosophy) in Energy, Environmental & Chemical Engineering are offered by the department.

Chemical engineers are involved in the transfer of scientific discoveries to modern technologies and novel products that benefit society and minimize the impact on the environment. They deal with multiscale aspects of generating clean energy, producing novel and superior materials, and utilizing the biological revolution to manufacture new products. They are involved in the development and manufacture of consumer products, as well as in design, operation and control of processes in a variety of industries (e.g., petroleum, petrochemical, chemical, consumer products, food, feed and pharmaceuticals). Their broad training in basic sciences (e.g., chemistry, physics, biology, mathematics) coupled with a strong foundation in chemical engineering principles (e.g., thermodynamics, mass and energy balances, transport phenomena, kinetics, separations, reaction engineering, control, product development and process design) makes them invaluable team members and leaders in any engineering enterprise. It also prepares them well for graduate studies in biochemical, biomedical, chemical, environmental and materials engineering. In addition, the BS degree in Chemical Engineering is a great starting point for pursuing a degree in business, law or medicine.

The curriculum is planned so as to provide students with a strong background in basic chemical engineering concepts, while allowing individual latitude to emphasize study in a specialized area or obtain added breadth both within and outside chemical engineering. The faculty devotes a considerable amount of time to individual advising. A contemporary approach to chemical engineering is focused on the multiscale aspects of the discipline, consistent with modern developments in computer-supported problem solving. Molecular-level understanding is utilized in product development and process design, which in turn are evaluated in terms of their impact on the environment and society according to the principles of green engineering.

Mission Statement

The mission of the department is to teach chemical engineering principles and their application in an inspiring learning environment and to prepare students for engineering careers by developing the skills of critical thinking, analytical abilities and communication proficiency, and by instilling a sense of professional ethics and societal responsibility.

Program Objectives

The Chemical Engineering Program Educational Objectives are as follows.

(a) Graduates who are employed in chemical process and related industries will perform tasks related to plant operation, control, engineering decision making, and process and product design. Other graduates who are not employed in chemical process and related industries will be employed in diverse professions including other engineering fields, management, consulting, etc., using their engineering and analytical backgrounds. All will engage in activities that promote professional growth and fulfillment.

(b) Graduates pursuing doctoral studies or other professional degrees will make reasonable progress toward completing the degree requirements and will engage in activities that promote professional development and fulfillment.

Advising

The department takes pride in the mentoring of undergraduate students. Each student who declares chemical engineering as a (potential) major is assigned an academic adviser from the tenure-track department faculty. Typically, the same adviser follows the student's academic progress and serves as a mentor from the freshman year through graduation.

Phone: (314) 935-5545
Departmental website: http://eece.wustl.edu/undergraduateprograms
Chair and Endowed Professor

Pratim Biswas
Lucy and Stanley Lopata Professor
PhD, California Institute of Technology
Aerosol science and engineering, air quality and pollution control, nanotechnology, environmentally benign energy production

Endowed Professors

Richard L. Axelbaum
Stifel and Quinette Jens Professor
PhD, University of California, Davis
Combustion, advanced energy systems, clean coal, aerosols, nanoparticle synthesis, rechargeable battery materials, thermal science

Milorad P. Dudukovic
Laura and William Jens Professor
PhD, Illinois Institute of Technology
Chemical reaction engineering, multiphase reactors, visualization of multiphase flows, tracer methods, environmentally benign processing

Daniel E. Giammar
Walter E. Browne Professor of Environmental Engineering
PhD, California Institute of Technology
Aquatic chemistry, environmental engineering, water quality, water treatment

Professors

William P. Darby
PhD, Carnegie Mellon University
Environmental planning and management

Palghat A. Ramachandran
PhD, University of Bombay
Chemical reaction engineering, applied mathematics, process modeling, waste minimization, environmentally benign processing

Associate Professors

John T. Gleaves
PhD, University of Illinois
Heterogeneous catalysis, particle chemistry

Young-Shin Jun
Harold D. Jolley Career Development Associate Professor
PhD, Harvard University
Aquatic processes, molecular issues in chemical kinetics, environmental chemistry, surface/physical chemistry, environmental engineering, biogeochemistry, nanotechnology

Yinjie Tang
Francis Ahmann Career Development Associate Professor
PhD, University of Washington, Seattle
Metabolic engineering, bioremediation

Assistant Professors

Jay R. Turner
DSc, Washington University
Air quality planning and management; aerosol science and engineering, life cycle assessments

Rajan Chakrabarty
PhD, University of Nevada, Reno
Characterizing the radiative properties of carbonaceous aerosols in the atmosphere; and researching gas phase aggregation of aerosols in cluster-dense conditions

John Fortner
I-CARES Career Development Assistant Professor
PhD, Rice University
Environmental engineering, aquatic processes, water treatment, remediation, and environmental implications and applications of nanomaterials

Marcus Foston
PhD, Georgia Institute of Technology
Utilization of biomass resources for fuel and chemical production, renewable synthetic polymers

Cynthia Lo
PhD, Massachusetts Institute of Technology
Solar energy conversion, materials, environmental interfaces, catalysis, computational chemistry and molecular modeling

Tae Seok Moon
PhD, Massachusetts Institute of Technology
Metabolic engineering and synthetic biology

Elijah Thimsen
PhD, Washington University
Gas-phase synthesis of inorganic nanomaterials for energy applications, and novel plasma synthesis approaches

Brent Williams
Raymond R. Tucker Distinguished I-CARES Career Development Assistant Professor
PhD, University of California
Aerosols, global climate issues, atmospheric sciences

Fuzhong Zhang
PhD, University of Toronto
Metabolic engineering, protein engineering, synthetic and chemical biology

Research Assistant Professor

Benjamin Kumfer
DSc, Washington University
Advanced coal technologies, biomass combustion, aerosol processes and health effects of combustion-generated particles
Lecturer
Janie Brennan
PhD, Purdue University
Biomaterials, synthetic biology, engineering education

Joint Faculty
Steven George
Elvera and William Stuckenbert Professor and Chair
PhD, University of Washington, Seattle
Tissue engineering; microphysiological systems; vascularizing engineered tissues

Himadri Pakrasi
PhD, University of Missouri–Columbia
Systems biology, photosynthesis, metal homeostasis

Nathan Ravi
PhD, Virginia Polytechnic Institute
Cataract, ocular biomaterials

Adjunct Faculty
Robert Heider
MME, Washington University
Process control and process design

Timothy Michels
MA, Washington University
Energy economics, building construction and equipment sciences

Nicholas J. Nissing
BS, Washington University
Product development and process design

Research Associate
Raymond Ehrhard
BS, University of Missouri–Rolla
Water and wastewater treatment technologies, process energy management

Professor of Practice
James Harlan
PhD, Harvard University, Kennedy School of Government
Technology development economics and venture finance

Professor Emeritus
Rudolf B. Husar
PhD, University of Minnesota
Environmental informatics, aerosol science and engineering

Majors
Please see the sections below for information about the Bachelor of Science in Chemical Engineering (p. 3), double majors and the pre-medical program (p. 3), and the Bachelor of Science in Applied Science (Chemical Engineering) (p. 4).

Bachelor of Science in Chemical Engineering

The BSChE degree program is designed to provide students with comprehensive training in chemical engineering fundamentals. This degree program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org). Program objectives are stated in the overview. The BSChE degree requires satisfactory completion of a minimum of 126 units as indicated in Table 1. From the courses listed in Table 1, the humanities and social sciences courses (except Engr 450X courses) may be taken pass/fail. A sample year-by-year BSChE curriculum is shown in Table 2.

The program of study consists of 26 units of physical and biological sciences (i.e., biology, chemistry and physics); 21 units of mathematics and engineering computing; 40 units of core chemical engineering courses; 21 units of humanities, social sciences and technical writing; and 18 units of chemical engineering electives. The chemical engineering electives permit students to tailor their studies toward specific goals such as obtaining more depth in a chemical engineering subdiscipline (e.g., materials) or increasing breadth by choosing courses from different subdisciplines. Some of these 18 units may be taken in other engineering departments or in the natural sciences or physical sciences. Students in collaboration with their advisers design a course of study (subject to certain requirements) for the chemical engineering electives. Consult the EECE department website for more details, including the requirements that must be satisfied by these chemical engineering electives.

Table 1: BSChE Requirements

Table 2: Sample BSChE Curriculum

The curriculum is designed to provide opportunities for students to explore areas of interest within chemical engineering. In addition to the accredited BS degree in Chemical Engineering, another choice is to pursue the course of study leading to the BS degree in Applied Science with a major in chemical engineering.

Double Majors and Pre-medical Program

Some students may be able to take more than the 126-unit minimum during a four-year program, especially if they have Advanced Placement units. This permits the choice of additional free electives from such areas as biology, computer science, humanities, social sciences or other engineering courses. It also provides an opportunity to pursue a double major. The rules for combining majors in engineering and multiple majors involving other university divisions are described in the "Combined Majors and/or Multiple Degrees" section of the School of Engineering & Applied Science. Particularly popular with chemical engineering
students is the combined degree program in Process Control Systems.

Traditionally, the undergraduate chemical engineering degrees (both the accredited degree and the applied science option) have been popular with students interested in medicine because the curriculum automatically satisfies many of the pre-medical requirements. The additional needed courses are taken as electives.

Bachelor of Science in Applied Science (Chemical Engineering)

This degree serves students who wish to be exposed to key chemical engineering principles yet seek a more flexible curriculum. The BS in Applied Science (Chemical Engineering) requires 18 units of 300-level or higher chemical engineering core courses. Consult the EECE department website for the specific requirements needed to earn this degree.

Minors

Please see the sections below for information about the minor in environmental engineering science (p. 4), the minor in energy engineering (p. 4), and the minor in nanoscale science and engineering (p. 5).

The Minor in Environmental Engineering Science

The EECE Department sponsors an undergraduate minor in environmental engineering science. This 21 unit program prepares the student to seek an entry-level position as an environmental engineer, scientist or analyst. The minor also provides a solid foundation for undertaking graduate study in environmental engineering. Visit the EECE department website for more information.

Units required: 21

Required courses:

Select from the following menus:

Introduction¹ (3 units):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 101</td>
<td>Introduction to Energy, Environmental and Chemical Engineering (fall)</td>
<td>3</td>
</tr>
<tr>
<td>EECE 210</td>
<td>Introduction to Environmental Engineering (spring)</td>
<td>3</td>
</tr>
</tbody>
</table>

Environmental Chemistry² (3 units):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 505</td>
<td>Aquatic Chemistry (fall)</td>
<td>3</td>
</tr>
<tr>
<td>EECE 531</td>
<td>Environmental Organic Chemistry (fall)</td>
<td>3</td>
</tr>
</tbody>
</table>

Environmental Engineering electives² (9 units):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 311</td>
<td>Green Engineering (fall)</td>
<td>3</td>
</tr>
</tbody>
</table>

Natural Science (3 units):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 381</td>
<td>Introduction to Ecology (spring)</td>
<td>3</td>
</tr>
<tr>
<td>EPSc 323</td>
<td>Biogeochemistry (spring)</td>
<td>3</td>
</tr>
<tr>
<td>EPSc 413</td>
<td>Introduction to Soil Science (spring)</td>
<td>3</td>
</tr>
<tr>
<td>EPSc 429</td>
<td>Environmental Hydrogeology (fall, even years)</td>
<td>3</td>
</tr>
<tr>
<td>EPSc 444</td>
<td>Environmental Geochemistry (fall, even years)</td>
<td>3</td>
</tr>
</tbody>
</table>

Environmental Policy and Social Science (3 units):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 451</td>
<td>Environmental Policy (fall)</td>
<td>3</td>
</tr>
<tr>
<td>EnSt 539</td>
<td>Interdisciplinary Environmental Clinic (fall/spring)</td>
<td>3</td>
</tr>
<tr>
<td>Pol Sci 332B</td>
<td>Environmental and Energy Issues (spring)</td>
<td>3</td>
</tr>
</tbody>
</table>

¹ Freshmen potentially interested in majoring in chemical engineering should take EECE 101; all other students working toward the minor in environmental engineering science should take EECE 210.

² Students taking both environmental chemistry courses can count one of them toward the environmental engineering electives.

Committee to Oversee Environmental Engineering Science Minor:

Daniel Giammar (EECE, Coordinator); William Darby (EECE); John Fortner (EECE)

The Minor in Energy Engineering

Objective: The goal is to provide students a list of classes that will enhance their background, knowledge and skills in the topical area of energy engineering. The minor covers classes in several fields of science and engineering which encompass the Department of Energy, Environmental & Chemical Engineering; the Department of Electrical & Systems Engineering; and Department of Mechanical Engineering & Materials Science.
A minor in energy engineering requires the completion of 18 units selected from the following menus. It is open to any undergraduate student pursuing an engineering major, students from the sciences (biology, chemistry, physics) in Arts & Sciences, and the environmental studies major.

Interested departments should expose students to energy and related concepts in their introductory courses.

Basic and Applied Sciences (fundamental content) (two courses):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Term</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 203</td>
<td>Thermodynamics I in EECE (fall)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>or MEMS 301</td>
<td>Thermodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EECE 301</td>
<td>Transport Phenomena I: Basics and Fluid Mechanics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>or MEMS 3410</td>
<td>Fluid Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EECE 303</td>
<td>Transport Phenomena III: Energy Transfer Processes (spring)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>or MEMS 342</td>
<td>Heat Transfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESE 332</td>
<td>Power, Energy and Polyphase Circuits (spring)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Social Science/Policy/Economics Elective (one course):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Term</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnSt 332</td>
<td>Environmental and Energy Issues (spring)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EnSt 451</td>
<td>Environmental Policy (fall)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EnSt 350W</td>
<td>Environmental Issues: Writing (spring)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Electives:

Choose three courses. One of the courses is required to be chosen from outside the student’s major degree department. A partner department may approve the use of a course listed under basic and applied sciences as an elective.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Term</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 311</td>
<td>Green Engineering (fall)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EECE 411</td>
<td>International Experience in EECE (summer/fall)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EECE 413</td>
<td>Energy Conversion and Storage</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EECE 512</td>
<td>Combustion Phenomena (fall)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EECE 552</td>
<td>Biomass Energy Systems and Engineering (spring)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EECE 591</td>
<td>Energy and Buildings (fall)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ESE 434</td>
<td>Solid-State Power Circuits and Applications (fall)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ESE 435</td>
<td>Electrical Energy Laboratory (spring)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ESE 437</td>
<td>Sustainable Energy Systems (spring)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MEMS 412</td>
<td>Design of Thermal Systems (spring)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MEMS 5420</td>
<td>HVAC Analysis and Design I (fall)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MEMS 5421</td>
<td>HVAC Analysis and Design II (spring)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MEMS 5422</td>
<td>Solar Energy Thermal Processes (summer)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MEMS 5423</td>
<td>Sustainable Environmental Building Systems (fall)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MEMS 5705</td>
<td>Wind Energy Systems (spring)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Committee to Oversee Energy Engineering Minor

Pratim Biswas (EECE, Coordinator); Hiro Mukai (ESE); David Peters (MEMS)

The committee ensures that any course added to the above lists contains a significant amount of energy topics and that the entire program be cohesive.

The Minor in Nanoscale Science and Engineering

The minor in nanoscale science and engineering will enhance a student’s background, knowledge and skills in the topical area of nanotechnology. This minor covers classes in several fields of science and engineering, encompassing all the departments in the School of Engineering & Applied Science and several in the College of Arts & Sciences. It is open to any undergraduate student pursuing an Engineering or Arts & Sciences (chemistry, physics, biology, environmental studies) major.

The minor in nanoscale science and engineering involves the following components: fundamentals; synthesis and applications; characterization, structures and modeling (CS&M). Two additional requirements are the Cleanroom Lab class entitled “Principles and Methods of Micro and Nanofabrication” and completion of a faculty supervised Independent Study "Project" for at least two semesters.

Units required: 18

Required courses:

Select from the following menus:

Fundamentals (choose one course):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 4810</td>
<td>General Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Chem 401</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Chem 465</td>
<td>Solid-State and Materials Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EECE 305</td>
<td>Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MEMS 361</td>
<td>Materials Science</td>
<td>4</td>
</tr>
<tr>
<td>MEMS 3601</td>
<td>Materials Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MEMS 5606</td>
<td>Soft Nanomaterials</td>
<td>3</td>
</tr>
<tr>
<td>Physics 217</td>
<td>Introduction to Quantum Physics</td>
<td>3</td>
</tr>
<tr>
<td>Physics 352</td>
<td>Physics of Biomolecules</td>
<td>3</td>
</tr>
<tr>
<td>Physics 472</td>
<td>Solid State Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Synthesis & Applications (choose one course):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 525</td>
<td>Engineering Aspects of Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>CSE 568M</td>
<td>Imaging Sensors</td>
<td>3</td>
</tr>
<tr>
<td>EECE 504</td>
<td>Aerosol Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>EECE 534</td>
<td>Environmental Nanochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>
ESE 336 Principles of Electronic Devices 3
ESE 438 Applied Optics 3
ESE 532 Introduction to Nano-Photonic Devices 3
MEMS 463 Nanotechnology Concepts and Applications 3
MEMS 5609 Electronic Materials Processing 3
MEMS 5801 Micro-Electro-Mechanical Systems I 3
MEMS 5802 Micro-Electro-Mechanical Systems II 3

Characterization, Structure and Modeling (choose one course):

BME 461 Protein Structure and Dynamics 3
Chem 478 Molecular Modeling 3
Chem 543 Physical Properties of Quantum Nanostructures 3
Chem 550 Mass Spectrometry 3
EECE 420 Properties of Materials 3
EECE 536 Computational Chemistry of Molecular and Nanoscale Systems 3
MEMS 5602 Non-metals 3
MEMS 5603 Materials Characterization Techniques I 3
MEMS 5604 Materials Characterization Techniques II 3

Nanotechnology Laboratory Class (required):

MEMS 5611 Principles and Methods of Micro and Nanofabrication 3
or CSE 506M, EECE 595

Independent Study Project (required):

Students should sign up for at least 2 semesters of Independent Study and work on a project related to nanotechnology under the supervision of a faculty member. A list of projects with potential faculty mentors will be circulated in the spring semester every year. Students will have to be signed up for the nanoscale science and engineering minor and must have completed at least two of the classes from the above categories before doing the Independent Study Project. Students can also come up with their own ideas for projects but need to get approval from the Nanoscale Science and Engineering Minor Committee and a faculty mentor.

The classes listed above will count for elective credit for all Engineering majors; however, students should check with their major advisers to confirm this.

Committee to Oversee Nanoscale Science and Engineering Minor

Parag Banerjee (MEMS, Coordinator); Pratim Biswas (EECE); Victor Gruev (CSE)

Visit the nanoscale science and engineering minor web page for more information.
E44 EECE 210 Introduction to Environmental Engineering
The objective of this course is to introduce students to the field of environmental engineering. The course emphasizes basic principles of mass and energy conservation which govern physical, chemical and biological processes. Applications include the estimation of contaminant concentrations and the design of environmental controls. (Prior to FL2015, this course was numbered: E63 262.)
Credit 3 units. EN: TU

E44 EECE 300 Independent Study
Credit variable, maximum 3 units.

E44 EECE 301 Transport Phenomena I: Basics and Fluid Mechanics
Engineering principles involved in the exchange of heat and matter in chemical processes. Laws governing the flow of liquids and gases in laboratory and plant equipment. Prerequisites: EECE 203, EECE 202, Math 217, ESE 317 or ESE 318, or permission of instructor. (Prior to FL2015, this course was numbered: E63 367.)
Credit 3 units. EN: TU

E44 EECE 302 Transport Phenomena II: Mass Transfer
Engineering principles involved in the exchange of heat and matter in chemical processes. Laws governing the flow of liquids and gases in laboratory and plant equipment. Prerequisite: EECE 301 (Prior to FL2015, this course was numbered: E63 368.)
Credit 3 units. EN: TU

E44 EECE 303 Transport Phenomena III: Energy Transfer Processes
Introductory treatment of the principles of heat transfer by conduction, convection or radiation. Mathematical analysis of steady and unsteady conduction along with numerical methods. Analytical and semi-empirical methods of forced and natural convection systems. Boiling and condensation heat transfer. Radiation between black-body and real surfaces. Radiation network analysis. Corequisite: EECE 302 or equivalent. (Prior to FL2015, this course was numbered: E63 369.)
Credit 3 units. EN: TU

E44 EECE 304 Mass Transfer Operations
Stagewise and continuous mass transfer operations, including distillation, gas absorption, humidification, leaching, liquid extraction, and membrane separations. Prerequisites: Math 217, EECE 201 and EECE 203. (Prior to FL2015, this course was numbered: E63 357.)
Credit 3 units. EN: TU

E44 EECE 305 Materials Science
Introduces the chemistry and physics of engineering materials. Emphasis on atomic and molecular interpretation of physical and chemical properties, the relationships between physical and chemical properties, and performance of an engineering material. Prerequisite: Math 217, Chem 111A. (Prior to FL2015, this course was numbered: E63 325.)
Credit 3 units. EN: TU

E44 EECE 311 Green Engineering
Strategies and methods for waste minimization and pollutant emission reduction. Principles of green engineering. Environmental transport and fate modeling. Design of heat and mass exchange networks for energy and waste reduction. Prerequisite: EECE 203 or permission of instructor. (Prior to FL2015, this course was numbered: E63 345.)
Credit 3 units. EN: TU

E44 EECE 313 Engineering Economics, Analytics, and Policy Analysis Tools
Introduction to basic engineering economics, cash flow modeling, and investment or policy analysis tools/frameworks applied to resource allocation problems with significant technical aspects. Tools developed with applications to case study examples and projects including practical spreadsheet modeling, economic and financial metrics, and basic decision sciences tools. Prerequisite: junior standing or permission of instructor. (Prior to FL2015, this course was numbered: E33 382.)
Credit 3 units. EN: TU

E44 EECE 314 Air Quality and Pollution Control
Generation, transport and fate of gaseous and particulate air pollutants. Meteorology and its coupling to air quality. Photochemical smog formation, visibility impairment, pollutant dispersion modeling, and source apportionment. Prerequisite: ChE 443 or permission of instructor. (Prior to FL2015, this course was numbered: E63 344.)
Credit 3 units. EN: TU

E44 EECE 400 Independent Study
Credit variable, maximum 6 units.

E44 EECE 401 Chemical Process Dynamics and Control
A state-of-the-art industrial virtual plant is used for the development of dynamic simulations, selection of instrumentation, statistical analysis of variability, and implementation of process control to improve process operation and efficiency. Prerequisites: Math 217 and EECE 201. (Prior to FL2015, this course was numbered: E63 462.)
Credit 3 units. EN: TU

E44 EECE 402 ChE Capstone
Application of engineering science and design, fundamentals of process and product development, computational techniques and economic principles to design of chemical and biological processes and procedures. A design project and/or an AIChE national design contest is included. Prerequisites: EECE 203, 304, 301, 414. Corequisites: EECE 403. (Prior to FL2015, this course was numbered: E63 478A.)
Credit 3 units. EN: TU

E44 EECE 403 Chemical Reaction Engineering
Introduction to chemical reaction engineering principles and applications in process and product development. Evaluation of reaction rates from mechanisms and experimental data, quantification of pertinent transport effects and application to reactor and product design. Prerequisites: EECE 201, 203, 204, 301. (Prior to FL2015, this course was numbered: E63 471.)
Credit 3 units. EN: TU
E44 EECE 405 Unit Operations Laboratory
Laboratory experiments designed to illustrate the principles of transport (heat, mass and momentum), thermodynamics, kinetics and reaction engineering, and separations that apply to chemical and biological systems. Experiments include traditional chemical engineering unit operations and emerging areas such as biotechnology, bioenergy and materials. One laboratory period and one workshop are alternating once a week. Lecture session(s) on process engineering components and process safety are scheduled every week. Prerequisites: EECE 301, 304. Corequisite: EECE 403. (Prior to FL2015, this course was numbered: E63 473A.) Credit 4 units. EN: TU

E44 EECE 411 International Experience in EECE
This course provides undergraduate students with an international experience related to energy, environmental and/or chemical engineering. The country visited varies from year to year with one or more EECE faculty members developing the program in collaboration with McDonnell Global Energy and Environment Partnership (MAGEEP) universities. Example activities include conducting field or laboratory research, attending short courses taught by MAGEEP university faculty members, and visiting attractions relevant to the course focus (e.g., industrial facilities). Students also gain an understanding of the local culture and history of the country visited. Course content includes a seminar series in the spring semester prior to the international experience, a two-to-three week visit to the location of study, and a follow-up student project and presentations during the fall semester which draw upon the experience. Students enroll in EECE 411 for the fall semester following the trip. (Prior to FL2015, this course was numbered: E33 401.) Credit 3 units. EN: TU

E44 EECE 412 Sustainability Exchange: Community and University Practicums
The Sustainability Exchange brings together students working in transdisciplinary teams to tackle real-world energy, environmental, and sustainability problems through an experiential form of education. Students participate in projects with clients and partners on- or off-campus, developed with and guided by faculty advisers drawn from across the university, with the intention of delivering an applicable end-product that explores “wicked” problems requiring innovative methods and solutions. These projects matter to the client or partner. The team-based project is complemented by a seminar that explores the field of design and design-thinking through problem-solving strategies and methodologies drawn from a wide range of creative practices, including design, engineering and science, as well as contemporary topics in energy, environment and sustainability. Students draw on these topics to influence their projects. This course is open to all undergraduate juniors and seniors. (Prior to FL2015, this course was numbered: E33 428.) Same as InterD 405
Credit 3 units. A&S IQ: SSC

E44 EECE 413 Energy Conversion and Storage
This course takes a thermodynamics perspective to analyzing electricity production and distribution systems, which are imperative to modern society. The course contains a hands-on laboratory component. Traditional and advanced heat engine cycles are discussed. Opportunities and challenges with renewable energy technologies are covered. Essential to the widespread adoption of renewable electricity sources, and also to increasing energy efficiency, are smart grid and smart building technologies. The goal is to give the student a quantitative overview, while focusing in on the details of a few important technological examples. Prerequisites: E63 ChE 320 or E44 EECE 203 or E37 MEMS 301 and E63 ChE 367 or E44 EECE 301 or E37 MEMS 3410; or instructor permission. Credit 3 units. EN: TU

E44 EECE 414 New Product and Process Development
An overview of product development, innovative solutions to technical problems, designed experimentation, evaluation of abstract data, product design, and the basics of intellectual property. Prerequisites: Junior standing and Chem 251, EECE 203 or by permission of the instructor. (Prior to FL2015, this course was numbered: E63 450.) Credit 3 units. EN: TU

E44 EECE 416 Industrial Process Safety
Analysis and management of fire and explosion hazards. Control of human exposure to toxic materials. Codes, standards, and regulations. Transportation and disposal of noxious substances. Analysis of drift from clouds, flares, and stacks. Venting of pressure vessels. Hazard evaluation and safety review of processes. Emergency plans for accidents and disasters. Prerequisite: EECE 203 or Chem 421 or permission of instructor. (Prior to FL2015, this course was numbered: E63 479/569.) Credit 3 units. EN: TU

E44 EECE 418 Principles of Surface and Colloid Science
Interfacial phenomena play key roles in such industrial operations as emulsification, catalysis, and detergency. Introduction to principles of surface science. Particular attention to describing the nature of the liquid/gas, liquid/liquid, solid/liquid, and solid/gas interfaces. Specific topics include methods of measuring surface tension, interfacial adsorption, surface area and particle size determinations, dispersion stabilization/floculation, emulsification, and wetting. Prerequisite: EECE 203 or permission of instructor. (Prior to FL2015, this course was numbered: E63 480.) Credit 3 units.

E44 EECE 420 Properties of Materials
A detailed look at the mechanical, chemical and surface properties of materials. Topics include elastic properties; plastic deformation; viscoelastic behavior; chemical resistance; corrosion resistance; and the electromagnetic properties of metal, plastic, ceramic and composite systems. Prerequisite: EECE 305. (Prior to FL2015, this course was numbered: E63 476.) Credit 3 units. EN: TU

E44 EECE 421 Advanced Energy Lab
Laboratory experiments to illustrate the application of engineering fundamentals to the study of advanced energy generation, storage, distribution and delivery systems. Modules include both lecture and laboratory components and explore topics such as fossil fuel combustion, solar PV and solar thermal systems, wind-derived energy, biofuels production, electrochemical energy storage. Extensive metering of energy use in Brauer Hall is used to study systems performance including energy efficiency. Prerequisites: EECE 203 or MEMS
E44 EECE 423 Senior Thesis
Research project to be selected by the student with the permission and recommendation of a faculty supervisor and the approval of the department chair. At conclusion of project, student prepares a report in the form of a senior thesis. (Prior to FL2015, this course was numbered: E63 499.) Credit variable, maximum 6 units.

E44 EECE 424 Digital Process Control Laboratory
Applications of digital control principles to laboratory experiments supported by a networked distributed control system. Lecture material reviews background of real-time programming, data acquisition, process dynamics, and process control. Exercises in data acquisition and feedback control design using simple and advanced control strategies. Experiments in flow, liquid level, temperature, and pressure control. Term project. Prerequisite: ESE 441 or EECE 401 or equivalent. (Prior to FL2015, this course was numbered: E63 433.) Credit 3 units. EN: TU

E44 EECE 425 Environmental Engineering Laboratory
Laboratory experiments to illustrate the application of engineering fundamentals to environmental systems. Applications of experimental design and data analysis principles. Introduction to relevant analytical instrumentation and laboratory techniques. Laboratory work supported by theoretical analysis and modeling as appropriate. Prerequisite: Consent of instructor. (Prior to FL2015, this course was numbered: E63 408A/508A.) Credit 3 units. EN: TU

E44 EECE 426 ChE Honors Design Project for AIChE
Student Contest Problem
Application of engineering science and design, fundamentals of process and product development, computational techniques and economic principles to design of chemical and biological processes and procedures in solving the AIChE national student contest problem. Up to two single and up to two group (2-3 per group) solutions may be chosen for national competition. Concurrent with EECE 422. Prerequisites: EECE 203, 304, 301, 414. Corequisites: EECE 403. (Prior to FL2015, this course was numbered: E63 478B.) Credit 1 unit. EN: TU

E44 EECE 502 Advanced Thermodynamics in EECE
The objective of this course is to understand classical thermodynamics at a deeper level than is reached during typical undergraduate work. Emphasis is placed on solving problems relevant to chemical engineering materials science. Prerequisite: E63 CHE 320 or E44 203 or equivalent. (Prior to FL2015, this course was numbered: E33 511.) Credit 3 units.

E44 EECE 503 Mathematical Methods in EECE
The course introduces students to mathematical principles essential for graduate study in any engineering discipline. Applied mathematical concepts are demonstrated by applications to various areas in energy, environmental, biomedical, chemical, mechanical, aerospace, electrical and civil engineering. (Prior to FL2015, this course was numbered: E33 502.) Credit 3 units.

E44 EECE 504 Aerosol Science and Technology
Fundamental properties of particulate systems — physics of aerosols, size distributions, mechanics and transport of particles: diffusion, inertia, external force fields. Visibility and light scattering. Aerosol dynamics — coagulation, nucleation, condensation. Applications to engineered systems: Nanoparticle synthesis, atmospheric aerosols, combustion aerosols, pharmaceutical aerosols. Prerequisites: EECE 301, ESE 317 or ESE 318 and 319. (Prior to FL2015, this course was numbered: E63 518.) Credit 3 units. EN: TU

E44 EECE 505 Aquatic Chemistry
Aquatic chemistry governs aspects of the biogeochemical cycling of trace metals and nutrients, contaminant fate and transport, and the performance of water and wastewater treatment processes. This course examines chemical reactions relevant to natural and engineered aquatic systems. A quantitative approach emphasizes the solution of chemical equilibrium and kinetics problems. Topics covered include chemical equilibrium and kinetics, acid-base equilibria and alkalinity, dissolution and precipitation of solids, complexation of metals, oxidation-reduction processes, and reactions on solid surfaces. A primary objective of the course is to be able to formulate and solve chemical equilibrium problems for complex environmental systems. In addition to solving problems manually to develop chemical intuition regarding aquatic systems, software applications for solving chemical equilibrium problems are also introduced. Prerequisites: Chem 112A (Prior to FL2015, this course was numbered: E33 443/543.) Credit 3 units. EN: TU

E44 EECE 506 Bioprocess Engineering I: Fundamentals & Applications
The course covers the fundamentals and provides the basic knowledge needed to understand and analyze processes in biotechnology in order to design, develop and operate them efficiently and economically. This knowledge is applied to understand various applications and bioprocesses, such as formation of desirable bio and chemical materials and products, production of bioenergy, food processing and waste treatment. The main objective of the course is to introduce the essential concepts and applications of bioprocessing to students of diverse backgrounds. An additional project is required to obtain graduate credit. Prerequisites: L41 Biol 2960 or equivalent
or permission of instructor. (Prior to FL2015, this course was numbered: E63 453/553.)
Credit 3 units. EN: TU

E44 EECE 507 Kinetics and Reaction Engineering Principles
The course is aimed at a modern multiscale treatment of kinetics of chemical and biochemical reactions and application of these fundamentals to analyze and design reactors. Application of reaction engineering principles in the areas related to energy generation, pollution prevention, chemical and biochemical processes are studied and illustrated with case studies and computer models. Description of the role of mass and heat transport in reacting systems is also provided with numerous examples. (Prior to FL2015, this course was numbered: E63 503.)
Credit 3 units.

E44 EECE 508 Research Rotation
First-year doctoral students in EECE should undertake research rotation as a requirement prior to choosing a permanent research adviser. The rotation requires the student to work under the guidance of a faculty member. (Prior to FL2015, this course was numbered: E63 508.)
Credit 3 units.

E44 EECE 509 Seminar in Energy, Environmental, and Chemical Engineering
All graduate students in EECE should attend the Departmental Seminar Series to gain exposure in various diverse fields of research. Students are also expected to participate in journal clubs and other discussion formats to discuss topical research areas. The course is required of all graduate students every semester of residency in the program. (Prior to FL2015, this course was numbered: E63 509.)
Credit 1 unit.

E44 EECE 510 Advanced Topics in Aerosol Science & Engineering
This course is focused on discussion of advanced topics in aerosol science and engineering and its applications in a variety of fields --- materials science, chemical engineering, mechanical engineering, and environmental engineering. Prerequisite: EECE 504. (Prior to FL2015, this course was numbered: E63 592A.)
Credit 3 units. EN: TU

E44 EECE 512 Combustion Phenomena
Introduction to fundamental aspects of combustion phenomena including relevant thermochemistry, fluid mechanics, and transport processes. Emphasis is on elucidation of the physico-chemical processes, problem formulation, and analytical techniques. Topics covered include ignition, extinction, diffusion flames, particle combustion, deflagrations, and detonations. Prerequisites: Graduate standing or permission of instructor. (Prior to FL2015, this course was numbered: E63 5404.)
Credit 3 units. EN: TU

E44 EECE 513 Topics in Nanotechnology
This course is focused on the discussion of topics in nanotechnology --- with a focus on nanoparticles and their applications in a variety of fields --- materials science, chemical engineering, mechanical engineering, environmental engineering, medicine. (Prior to FL2015, this course was numbered: E63 526.)
Credit 3 units. EN: TU

E44 EECE 514 Atmospheric Science and Climate
This course covers current research topics in atmospheric chemistry and climate change. Topics include atmospheric composition, chemistry, transport, dynamics, radiation, greenhouse gases, natural and anthropogenic primary pollution sources and secondary aerosol production, and measurement techniques. Focus is placed on how our atmosphere and climate are altered in a world of changing energy production and land use. Prerequisites: Chemistry 112A, Physics 118 or 198, and junior or higher standing. (Prior to FL2015, this course was numbered: E63 547.)
Credit 3 units. EN: TU

E44 EECE 515 Dynamics of Air Pollution
Physicochemical processes governing the dynamics of pollutants from point and non-point sources: generation, transport and decay. Application of fundamental thermodynamics, mass/heat transfer and fluid mechanics principles to environmental systems. Prerequisites: EECE 203, ESE 317 or ESE 318 and 319, and EECE 505, or equivalent, or permission of instructor. (Prior to FL2015, this course was numbered: E63 510.)
Credit 3 units. EN: TU

E44 EECE 516 Measurement Techniques for Particle Characterization
The purpose of this course is to introduce students to the principles and techniques of particle measurement and characterization. Practical applications of particle technology include air pollution measurement, clean manufacturing of semiconductors, air filtration, indoor air quality, particulate emission from combustion sources and so on. The course focuses on (1) integral moment measurement techniques, (2) particle sizing and size distribution measuring techniques, and (3) particle composition measurement techniques. The related issues such as particle sampling and transportation, the instrument calibration, and particle standards also are covered. (Prior to FL2015, this course was numbered: E63 563.)
Credit 3 units. EN: TU

E44 EECE 517 Sustainable Air Quality
Introduction to sustainability and sustainable air quality. Systems science as an organizing principle for air quality management. Setting of air quality goals. Observing the status and trends. Establishing causal factors: energy use and chemical processing. Natural sources and variability. Corrective actions to reach air quality goals. Process design for emission reductions. Adaptive response to air pollution episodes. A web-based class project is conducted through the semester. (Prior to FL2015, this course was numbered: E63 549.)
Credit 3 units. EN: TU

E44 EECE 531 Environmental Organic Chemistry
Fundamental, physical-chemical examination of organic molecules (focused on anthropogenic pollutants) in aquatic (environmental) systems. Students learn to calculate and predict chemical properties that are influencing the partitioning of organic chemicals within air, water, sediments and biological systems. This knowledge is based on understanding intermolecular interactions and thermodynamic principles. Mechanisms of important thermochemical, hydrolytic, redox, and biochemical transformation reactions are also investigated.
leading to the development of techniques (such as structure-reactivity relationships) for assessing environmental fate or human exposure potential. Prerequisite: Chem 112A. (Prior to FL2015, this course was numbered: E33 448/548.) Credit 3 units. EN: TU

E44 EECE 533 Physical and Chemical Processes for Water Treatment
Water treatment is examined from the perspective of the physical and chemical unit processes used in treatment. The theory and fundamental principles of treatment processes are covered and are followed by the operation of treatment processes. Processes covered include gas transfer, adsorption, precipitation, oxidation-reduction, flocculation, sedimentation, filtration, and membrane processes. (Prior to FL2015, this course was numbered: E33 588.) Credit 3 units. EN: TU

E44 EECE 534 Environmental Nanochemistry
This course involves the study of nanochemistry at various environmental interfaces, focusing on colloid, nanoparticle, and surface reactions. The course also (1) examines the thermodynamics and kinetics of nanoscale reactions at solid-water interfaces in the presence of inorganic or organic compounds and microorganisms; (2) investigates how nanoscale interfacial reactions affect fate and transport of contaminants; (3) introduces multidisciplinary techniques for obtaining fundamental information about the structure and reactivity of nanoparticles and thin films, and the speciation or chemical form of environmental pollutants at the molecular scale; (4) explores connections between environmental nanochemistry and environmental kinetic analysis at larger scales. This course helps students attain a better understanding of the relationship between nanoscience/technology and the environment — specifically how nanoscience could potentially lead to better water treatments, more effective contaminated-site remediation, or new energy alternatives. (Prior to FL2015, this course was numbered: E33 534.) Credit 3 units. EN: TU

E44 EECE 536 Computational Chemistry of Molecular and Nanoscale Systems
This course explores the structure, properties and reactivity of molecular and nanoscale systems in engineering using computational chemistry tools. The science behind density functional theory (DFT) calculations and molecular dynamics (MD) simulations is explained and applied in the context of multiscale modeling. Special emphasis is placed on solid-state materials and aqueous/biological systems found in engineering. Students are encouraged to apply the methods discussed in class to their own research topics. Prerequisites: EECE 203 and 204, or permission of the instructor. (Prior to FL2015, this course was numbered: E33 591.) Credit 3 units. EN: TU

E44 EECE 551 Metabolic Engineering and Synthetic Biology
Synthetic Biology is a transformative view of biology from "observation approach" to "synthesis approach." It is a new "engineering" discipline and aims to make the engineering of new biological function predictable, safe and quick. It will pave a wide range of applications to transform our views on production of sustainable energy and renewable chemicals, environmental problems, and human disease treatments. The field intersects with metabolic engineering in areas such as the design of novel pathways and genetic circuits for product generation and toxic chemical degradation. In this course, the field and its basis are introduced. First, relevant topics in biology, chemistry, physics and engineering are covered. Second, students participate in brain-storming and discussion on new biology-based systems. Last, students design and present new synthetic biology systems to solve real-world problems. (Prior to FL2015, this course was numbered: E33 596A.) Credit 3 units.

E44 EECE 552 Biomass Energy Systems and Engineering
This course offers background in the organic chemistry, biology and thermodynamics related to understanding the conversion of biomass. In addition, it includes relevant topics relating to biomass feedstock origin, harvest, transportation, storage, processing and pretreatment along with matters concerning thermo- and biochemical conversion technologies required to produce fuels, energy, chemicals and materials. Also, various issues with respect to biomass characterization, economics and environmental impact are discussed. The main objective of the course is to introduce concepts central to a large-scale integrated biomass bioconversion system. (Prior to FL2015, this course was numbered: E33 495D/595D.) Credit 3 units. EN: TU

E44 EECE 554 Molecular Biochemical Engineering
This course is set for junior-level graduate students to bridge the gap between biochemical engineering theory and academic research in bioengineering. It covers common molecular biotechnologies (molecular biology, microbiology, recombinant DNA technology, protein expression, etc.), biochemical models (enzyme catalysis, microbial growth, bioreactor, etc.) and bioengineering methodologies (protein engineering, expression control systems, etc.). These theories and technologies are introduced in a manner closely related to daily academic research or biochemical industry. Areas of application include biofuel and chemical production, drug discovery and biosynthesis, bioremediation, and environmental applications. This course also contains a lab section (20~30%) that requires students to apply the knowledge learned to design experiments, learn basic experimental skills and solve current research problems. Prerequisites: EECE 101, Biol 2960, Biol 4810. (Prior to FL2015, this course was numbered: E33 595C.) Credit 3 units. EN: TU

E44 EECE 556 Bioenergy
A broad overview of the flow of energy, captured from sunlight during photosynthesis, in biological systems, and current approaches to utilize the metabolic potentials of microbes and plants to produce biofuels and other valuable chemical products. An overall emphasis is placed on the use of large-scale genomic, transcriptomic and metabolomic datasets in biochemistry. The topics covered include photosynthesis, central metabolism, structure and degradation of plant lignocellulose, and microbial production of liquid alcohol, biodiesel, hydrogen & other advanced fuels. Course meets during the second half of the spring semester. Prerequisite: Biol 4810 or permission of the instructor. (Prior to FL2015, this course was numbered: E33 4830/5830.) Credit 2 units.

E44 EECE 571 Industrial and Environmental Catalysis
Major industrial and environmental catalytic processes. Principal theories of heterogeneous catalysis. Experimental methods and
E44 EECE 572 Advanced Transport Phenomena
Credit 3 units. EN: TU

E44 EECE 574 Electrochemical Engineering
This course teaches the fundamentals of electrochemistry and the application of the same for analyzing various electrochemical energy sources/devices. The theoretical frameworks of current-potential distributions, electrode kinetics, porous electrode and concentrated solution theory are presented in the context of modeling, simulation and analysis of electrochemical systems. Applications to batteries, fuel cells, capacitors, copper deposition are explored. Prerequisites/corequisites: EECE 501–502 (or equivalent), or permission of instructor. (Prior to FL2015, this course was numbered: E33 589.)
Credit 3 units.

E44 EECE 576 Chemical Kinetics and Catalysis
This course reflects the fast, contemporary progress being made in decoding kinetic complexity of chemical reactions, in particular heterogeneous catalytic reactions. New approaches to understanding relationships between observed kinetic behavior and reaction mechanism are explained. Present theoretical and methodological knowledge are illustrated by many examples taken from heterogeneous catalysis (complete and partial oxidation), combustion and enzyme processes. Prerequisite: senior or graduate student standing. (Prior to FL2015, this course was numbered: E33 598.)
Credit 3 units. EN: TU

E44 EECE 590 Energy and Environmental Economic Decision-Making
This course teaches economic principles in energy and environmental decision-making. After evaluating public and private projects for selection based on economic considerations and resource allocation, students apply principles of decision-making in case studies. Other tools are essentials of conditional probability, value of information and testing, and utility. (Prior to FL2015, this course was numbered: E33 590.)
Credit 1.5 units.

E44 EECE 591 Energy and Buildings
There is a $2 trillion U.S. market in energy efficiency with paybacks of 4–5 years. This course is an introduction to energy use in the built environment and means and methods for evaluating and harvesting these financial benefits. It is based on fundamentals of energy usage in building systems. Building sciences for architectural envelope, heating and cooling systems, lighting and controls. Building/weather interaction and utility weather regression analyses. Building dynamics and rates of change in energy usage. Students work in groups to perform an energy audit for a building on campus. Prerequisite: senior or graduate student standing, or permission of instructor. (Prior to FL2015, this course was numbered: E33 495/595.)
Credit 3 units.

E44 EECE 593 Energy and Environment
This course sets out to instruct the student on how to understand decision-making regarding energy and the environment, and provides a unique educational experience, wherein the challenges and potential solutions to meeting future energy needs are clearly elucidated via lectures and experiential learning. Topics include: overview of energy and the environment and associated challenges; description of power generation from coal, natural gas, biomass, wind, solar, hydro, geothermal and nuclear; political, environmental and social considerations; regulations, economics, decision-making; students gain experience with software capable of analyzing renewable energy projects worldwide, from backyard to power-plant scale systems. (Prior to FL2015, this course was numbered: E33 500A.)
Credit 3 units.

E44 EECE 595 Principles of Methods of Micro and Nanofabrication
An introduction to the fundamentals of micro- and nano-fabrication processes with emphasis on cleanroom practices. The physical principles of optical lithography, electron-beam lithography, alternative nanolithography techniques, and thin film deposition and metrology methods. The physical and chemical processes of wet and dry etching. Cleanroom concepts and safety protocols. Sequential micro-fabrication processes involved in the manufacture of microelectronic and photonic devices. Imaging and characterization of micro- and nano-structures. Examples of practical existing and emerging micro- and nano-devices. Prerequisite: Chem 111A or consent from instructor. (Prior to FL2015, this course was numbered: E33 595B.)
Credit 3 units. EN: TU

E44 EECE 599 Masters Research
Credit variable, maximum 9 units.