Physics

The Department of Physics offers Master of Arts (AM) and Doctor of Philosophy (PhD) programs in Physics. Research covers a wide area of experimental and theoretical physics, and benefits from close contacts with nuclear and inorganic chemists in the chemistry department, planetary scientists in the earth and planetary sciences department, applied scientists in the School of Engineering & Applied Science and the Institute of Materials Science & Engineering, and biological scientists both on the Danforth Campus and at the School of Medicine. The department is a major participant in the McDonnell Center for the Space Sciences and the Institute of Materials Science & Engineering.

Experimental research areas include:

- astrophysics (observations of cosmic rays, gamma rays, X-rays, dark matter detection, high-precision tests of gravity)
- space sciences (laboratory analysis of meteorites, stardust, interplanetary dust particles)
- condensed matter and materials physics (graphene and other two-dimensional atomic crystals, quantum information and atomic physics with condensed matter devices, nanostructured materials, metallic glasses and liquids, magnetism and superconductivity, high-pressure physics, nuclear magnetic resonance)
- biophysics (computational neurophysics, systems cell biology).

Theoretical research areas include:

- biophysics (nonequilibrium dynamics in biological cells, theory of the microbiome)
- condensed matter physics (strongly correlated electron systems, topological phases, excited states of many-electron systems, density functional theory and glasses)
- elementary particle physics (astroparticle physics, dark matter, theoretical cosmology, strong interactions, non-Hermitian Hamiltonians, quark physics beyond the Standard Model)
- nuclear theory (nuclear matter, correlations in nuclei).

Students are usually admitted to the PhD program rather than to the AM. They spend their first two years taking graduate courses, finding a dissertation adviser, and starting research. During that time they receive a stipend and complete two semesters of mentored teaching experiences. After achieving the required course grades and passing an oral examination at the end of their second year, students are normally paid from research funds while working on their research and writing a dissertation. The PhD program typically takes between five and six years to complete.

Website: http://physics.wustl.edu/graduate

Faculty

Chair
Mark Alford (http://physics.wustl.edu/people/alford_mark-g)
Professor
PhD, Harvard University
Nuclear/particle physics

Endowed Professors
Ramanath Cowsik (http://www.physics.wustl.edu/people/cowsik_ramanath)
James S. McDonnell Professor of Space Sciences
PhD, University of Bombay
Astrophysics and space sciences
Kenneth F. Kelton (http://www.physics.wustl.edu/people/kelton_kenneth-f)
Arthur Holly Compton Professor of Physics
PhD, Harvard University
Condensed matter and materials physics

Professors
James H. Buckley (http://physics.wustl.edu/people/buckley_james-h)
PhD, University of Chicago
Experimental high-energy astrophysics
Anders E. Carlsson (http://physics.wustl.edu/people/carlsson_anders-e)
PhD, Harvard University
Biophysics
Willem H. Dickhoff (http://www.physics.wustl.edu/people/dickhoff_willem-h)
PhD, Free University, Amsterdam
Many-body theory
Martin H. Israel (http://www.physics.wustl.edu/people/israel_martin-h)
PhD, California Institute of Technology
Experimental cosmic-ray physics
Jonathan I. Katz (http://www.physics.wustl.edu/people/katz_jonathan-i)
PhD, Cornell University
Theoretical astrophysics
Henric Krawczynski (http://www.physics.wustl.edu/people/krawczynski_henric)
PhD, University of Hamburg
Experimental high-energy astrophysics
Zohar Nussinov (http://www.physics.wustl.edu/people/nussinov_zohar)
PhD, University of California, Los Angeles
Theoretical condensed matter physics
Michael C. Ogilvie (http://www.physics.wustl.edu/people/ogilvie_michael-c)
PhD, Brown University
Theoretical particle physics

Ralf Wessel (http://www.physics.wustl.edu/people/wessel_ralf)
PhD, University of Cambridge
Biophysics

Joint Professors

Shankar M.L. Sastry (http://www.physics.wustl.edu/people/sastry_shankar)
PhD, University of Toronto
(Mechanical Engineering)

Lee G. Sobotka (http://www.physics.wustl.edu/people/sobotka_lee-g)
PhD, University of California, Berkeley
(Chemistry)
Experimental nuclear physics

Associate Professors

Francesc Ferrer (http://www.physics.wustl.edu/people/ferrer_francesc)
PhD, Universitat Autònoma de Barcelona
Theoretical astro-particle physics & cosmology

Kater Murch (http://www.physics.wustl.edu/people/murch_kater)
PhD, University of California, Berkeley
Quantum information and materials

Alexander Seidel (http://www.physics.wustl.edu/people/seidel_alexander)
PhD, Massachusetts Institute of Technology
Theoretical condensed matter physics

Li Yang (http://www.physics.wustl.edu/people/yan_li)
PhD, Georgia Institute of Technology
Condensed matter and materials science

Assistant Professors

Bhupal Dev (http://physics.wustl.edu/people/dev_bhupal)
PhD, University of Maryland, College Park
Theoretical astro-particle physics & cosmology

Erik Henriksen (http://www.physics.wustl.edu/people/henriksen_ek)
PhD, Columbia University
Condensed matter and materials science

Shankar Mukherji (http://physics.wustl.edu/people/mukherji_shankar)
PhD, Massachusetts Institute of Technology/ Harvard Medical School
Systems cell biology

Ryan Ogliore (http://physics.wustl.edu/people/ogliore_ryan)
PhD, California Institute of Technology
Cosmochemistry, planetary science

Saori Pastore
PhD, Old Dominion University
Theoretical nuclear physics

Maria Piarulli
PhD, Old Dominion University
Theoretical nuclear physics

Mikhail Tikhonov (http://physics.wustl.edu/people/tikhonov_mikhail)
PhD, Princeton University
Microbiome, microbial ecology and evolution

Lecturers

Manel Errando (http://physics.wustl.edu/people/errando_manel)
PhD, Universitat Autonoma de Barcelona, Spain

Mairin Hynes (http://www.physics.wustl.edu/people/hynes_kathryn-mairin)
PhD, Washington University

Research Professors

Sachiko Amari (http://www.physics.wustl.edu/people/amari_sachiko)
PhD, Kobe University

Robert Binns (http://www.physics.wustl.edu/people/binns_w-robert)
PhD, Colorado State University

Alexander Meshik (http://www.physics.wustl.edu/people/meshik_alex)
PhD, Vernadsky Institute of Cosmochemistry

Michael Nowak
PhD, Stanford University

Research Associate Professor

Olga Pravdivtseva (http://physics.wustl.edu/people/pravdivtseva_olga)
PhD, Vernadsky Institute, Russian Academy of Sciences

Research Assistant Professors

Viatcheslav Bugaev (http://www.physics.wustl.edu/people/bugaev_viatcheslav)
PhD, Altai State University

Nan Lui (http://physics.wustl.edu/people/liu_nan)
PhD, University of Chicago

Brian Rauch (http://www.physics.wustl.edu/people/rauch_brian)
PhD, Washington University
Professors Emeriti

Carl M. Bender
Wilfred R. and Ann Lee Konneker Professor of Physics
PhD, Harvard University
Claude W. Bernard
PhD, Harvard University
Thomas Bernatowicz
PhD, Washington University
John W. Clark
Wayman Crow Professor of Physics
PhD, Washington University
Mark S. Conradi
PhD, Washington University
Peter A. Fedders
PhD, Harvard University
Michael W. Friedlander
PhD, University of Bristol
Patrick C. Gibbons
PhD, Harvard University
Charles M. Hohenberg
PhD, University of California, Berkeley
Kazimierz Luszczynski
PhD, University of London
James G. Miller
Albert Gordon Hill Professor of Physics
PhD, Washington University
Peter R. Phillips
PhD, Stanford University
John H. Scandrett
PhD, University of Wisconsin-Madison
James S. Schilling
PhD, University of Wisconsin-Madison

Degree Requirements

Master of Arts (AM) and PhD in Physics

This document summarizes the physics department's degree requirements. These are in addition to the requirements established by the Graduate School. For more information regarding requirements for doctoral degrees or master's degrees in the Graduate School, please visit the appropriate sections of this Bulletin.

Requirements for AM in Physics

36-unit academic credit course requirement

Courses that count toward academic credit:

- Any regular 400- or 500-level lecture courses in the physics department, including Physics 597/598 Supervised Teaching of Physics and Physics 582 Research Seminar
- Courses outside the physics department, if approved by the Master's Program director
- Reading courses, for which students should register for Physics 589/590 Selected Topics in Physics
- Supervised research, for which students should register for Physics 593/594 Introduction to Methods in Physics. This can be used for a maximum of 6 units of academic credit.

Students can take up to six 400-level physics classes toward their academic credit without special permission from the graduate studies committee. However, they should discuss the merits of doing so with their adviser.

Core course requirements

For qualification, students must pass five core 500-level physics courses. In those courses, the student must maintain an average of a B (GPA 3.0), with no more than one grade lower than B-.

A given core course may be taken only once. If more than five courses are taken, the average will be determined from the best five course grades.
Must take:

Required	Units
Classical Electrodynamics I | 3
Quantum Mechanics I | 3
Statistical Mechanics | 3

plus at least two of:

Required	Units
Methods of Theoretical Physics I | 3
Classical Electrodynamics II | 3
Classical Mechanics or Nonlinear Dynamics | 3
Quantum Mechanics II | 3

Requirements for PhD in Physics

Outline of requirements

- Complete 36 units of academic credit (detailed below), maintaining an average grade of at least B (GPA 3.0).
- Pass the PhD qualification procedure. This must be done before a student can formally join a research group, and is normally completed before the start of the third year.
- Teaching requirements.
- Write a thesis ("doctoral dissertation").
- Pass an oral dissertation defense examination.

36-unit academic credit course requirement

Courses that count toward academic credit:

- Any regular 400- or 500-level lecture courses in the physics department, including Physics 597/598 Supervised Teaching of Physics and Physics 582 Research Seminar
- Courses outside the physics department, if approved by the student's adviser and the director of graduate studies
- Reading courses, for which students should register for Physics 589/590 Selected Topics in Physics
- Supervised research, for which students should register for Physics 593/594 Introduction to Methods in Physics. This can be used for a maximum of 6 units of academic credit.

Students can take up to four 400-level physics classes toward their academic credit without special permission from the graduate studies committee. However, they should discuss the merits of doing so with their adviser.

PhD qualification: course requirements

For qualification, students must pass six core 500-level physics courses. In those courses, the student must maintain an average of a B (GPA 3.0), with no more than one grade lower than B-. A given core course may be taken only once. If more than six core courses are taken, the average will be determined from the best six grades.

Must take:

Required	Units
Theoretical Physics | 3
Classical Electrodynamics I | 3
Quantum Mechanics I | 3
Statistical Mechanics | 3

plus at least two of:

Required	Units
Methods of Theoretical Physics II | 3
Classical Electrodynamics II | 3
Classical Mechanics or Nonlinear Dynamics | 3
Quantum Mechanics II | 3

These requirements can be modified or waived for students with previous graduate experience, e.g., a master's degree in physics.

PhD qualification: oral examination requirement

To qualify, the student must give a presentation to a committee of three physics faculty members (the prospective research advisor and two others). The student should demonstrate a basic understanding of a major topic of current research in the selected area of study, chosen in consultation with the student’s prospective thesis advisor. One week before the oral exam, the student must prepare a written paper (approximately 1500-3000 words) summarizing the content of the presentation and give it to the committee. The student’s responses to questions raised by the examination committee are graded as adequate or not. Students have a chance to answer inadequately answered questions in writing within 48 hours after the examination. The student is not allowed to receive assistance in preparing the written response from any other individuals. The answers should be either given in person to the chair of the examination committee or emailed to the chair as a PDF file so that it is time stamped. The committee will determine whether the written answers are sufficient.

The committee must be chosen and approved by the department chairman by the end of a student's third semester (typically in December of the second year). The oral examination should be taken by the end of a student's fourth semester (typically in May of the second year). If the student fails the oral examination, they can take it again one additional time.

Teaching requirements

These requirements must be completed before the student submits their doctoral dissertation to the Graduate School:
• **Take L31 Physics 597**: Graduate students are required to take L31 Physics 597 Supervised Teaching of Physics prior to serving as an assistant in instruction. Students typically take Physics 597 in their first fall semester.

• **At least two semesters of mentored teaching experiences**

• **Four hours of oral presentations**: Graduate students must give a total of 4 hours of “specialized oral presentation.” For example, teaching a class (e.g., when substituting for a professor); giving seminars, such as the weekly graduate seminar; or giving oral presentations at conferences, journal clubs, and the like.

For dissertation requirements, including the oral defense of the dissertation: