Chemistry

For students interested in discovering insights into nature and exploring new ways to meet the needs of our technological society and new methods for creating novel compounds and useful materials, chemistry is an excellent major to pursue.

Chemistry is a multifaceted science that extends into biology, medicine, physics, mathematics, business and commerce. Studying chemistry provides the opportunity to explore the structure and constitution of the microworlds of atoms and molecules, the chemical and physical transformations that occur, and the principles that govern these changes.

Our program provides a strong foundation in the core areas of chemistry: organic, physical, inorganic, nuclear, theoretical. Special emphases in the department include such emerging interdisciplinary fields as organometallic, bioorganic, biophysical, macromolecular, polymer, environmental and materials chemistry. The department has close research ties with the departments of Physics; Earth and Planetary Sciences; Biology; Biomedical Engineering; Energy, Environmental & Chemical Engineering; Mechanical Engineering & Materials Science; and with departments at the Washington University School of Medicine.

Undergraduate majors in chemistry study chemistry with renowned scientists who are teacher-scholars dedicated to the students' learning experience. The department is small, and it has world-class instruments and facilities, which allows students to receive individualized instruction and to participate in cutting-edge science. Each student works closely with a faculty member to design and carry out an original research project. Students may participate in interdisciplinary research at the School of Medicine or the School of Engineering & Applied Science. Research internships at local companies also can be arranged.

A variety of creative and productive careers are available to graduates with a degree in chemistry. Graduates may pursue a career in chemistry or such related professions as biochemistry, medicine and chemical engineering. Most students continue in graduate or medical school, and some go on to business or law school. Positions in government, industry and education are also available.

Phone: 314-935-6530
Email: chemistry@wustl.edu
Website: http://chemistry.wustl.edu

Faculty

Chair
William E. Buhro (http://www.chemistry.wustl.edu/faculty/buhro)
George E. Pake Professor of Arts & Sciences
PhD, University of California, Los Angeles

Endowed Professors
Joseph J.H. Ackerman (http://www.chemistry.wustl.edu/faculty/ackerman)
William Greenleaf Eliot Professor
PhD, Colorado State University

Robert E. Blankenship (http://www.chemistry.wustl.edu/people/primary-faculty/robert-blankenship)
Lucille P. Markey Distinguished Professor of Arts & Sciences
PhD, University of California, Berkeley

Regina F. Frey (http://www.chemistry.wustl.edu/faculty/frey)
Florence Moog Professor of STEM Education
Associate Professor, Department of Chemistry
PhD, University of Utah

Jacob Schaefer (http://www.chemistry.wustl.edu/faculty/schaefer)
Charles Allen Thomas Professor of Chemistry
PhD, University of Minnesota

Holden Thorp (http://provost.wustl.edu/about/provost-thorp)
Provost
Rita Levi-Montalcini Distinguished University Professor
PhD, California Institute of Technology

Professors
John R. Bleeke (http://www.chemistry.wustl.edu/faculty/bleeke)
PhD, Cornell University

Peter P. Gaspar (http://www.chemistry.wustl.edu/faculty/gaspar)
PhD, Yale University

Michael L. Gross (http://www.chemistry.wustl.edu/faculty/mgross)
PhD, University of Minnesota

Sophia E. Hayes (http://www.chemistry.wustl.edu/people/primary-faculty/sophia-e-hayes)
PhD, University of California, Santa Barbara

J. Dewey Holten (http://www.chemistry.wustl.edu/faculty/holten)
PhD, University of Washington

Ronald A. Lovett (http://www.chemistry.wustl.edu/faculty/lovett)
PhD, University of Rochester

Liviu Mirica (http://www.chemistry.wustl.edu/faculty/mirica)
PhD, Stanford University

Kevin D. Moeller (http://www.chemistry.wustl.edu/faculty/moeller)
PhD, University of California, Santa Barbara

Jay Ponder (http://www.chemistry.wustl.edu/faculty/ponder)
PhD, Harvard University

Demetrios G. Sarantites (http://www.chemistry.wustl.edu/faculty/sarantites)
PhD, Massachusetts Institute of Technology
Majors

The Major in Chemistry

Total units required: 53-62

Required courses: To prepare for a major in chemistry, students will take:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 111A</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Chem 112A</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Chem 151</td>
<td>General Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>Chem 152</td>
<td>General Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>Chem 261</td>
<td>Organic Chemistry I with Lab</td>
<td>4</td>
</tr>
<tr>
<td>Chem 262</td>
<td>Organic Chemistry II with Lab</td>
<td>4</td>
</tr>
<tr>
<td>Physics 117A or Physics 197</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Physics 118A or Physics 198</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Math 131</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>Math 132</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>Math 233</td>
<td>Calculus III</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 35

Majors in chemistry must take a minimum of 18 units in advanced courses in chemistry or biochemistry, among which must be included:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 401</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Chem 402</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Chem 461</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 9

plus 9 units in chemistry at the 300 level or above (not including Chem 490 Introduction to Research or Chem 495 Advanced Undergraduate Research in Chemistry). Biol 451 General Biochemistry may be used to complete 3 of the required 9 units.

At least 3 of these 9 advanced units must be in a laboratory course, chosen from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 358</td>
<td>Organic Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Chem 435</td>
<td>Nuclear and Radiochemistry Lab</td>
<td>3</td>
</tr>
<tr>
<td>Chem 445</td>
<td>Instrumental Methods: Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Chem 470</td>
<td>Inorganic Chemistry Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

Also, Physics 217 Introduction to Quantum Physics and additional mathematics courses are recommended. Chem 181 Freshman Seminar in Chemistry, a seminar to introduce first-year students to research activities in the department, is optional.
A working knowledge of computer programming and a foreign language, such as German or Russian, is encouraged but not required.

Students have the advantage of planning their course program with their adviser in accordance with personal interests. Some graduate courses also are available to seniors.

All chemistry course work must be taken in residence at Washington University to be eligible to earn a chemistry major. A minimum grade of C- must be earned in each course to count toward the chemistry major.

Note: Per the College of Arts & Sciences guidelines, if a student has a major and a minor or has two minors, only introductory (100- and 200-level) courses may be counted, when relevant, toward the requirements of both programs. All advanced (300- and 400-level) courses must be unique to each program, i.e., no advanced course may “double-count” for the course work needed to fulfill either program’s minimal requirements. Should a student’s major/minor programs require the same course, a departmentally-sanctioned elective must be chosen to replace the course in one of the programs.

The Major with Concentration in Biochemistry

Chemistry majors with a concentration in biochemistry should add Biol 2960 Principles of Biology I and Biol 2970 Principles of Biology II as prerequisites to the major and specify a minimum of 18 units in advanced courses in biology and chemistry, among which must be included:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 481</td>
<td>General Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Chem 482</td>
<td>General Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Chem 401</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Chem 402</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Chem 461</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units 15

and at least one advanced lab chosen from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 358</td>
<td>Organic Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Chem 435</td>
<td>Nuclear and Radiochemistry Lab</td>
<td>3</td>
</tr>
<tr>
<td>Chem 445</td>
<td>Instrumental Methods: Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Chem 470</td>
<td>Inorganic Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Biol 437</td>
<td>Laboratory on DNA Manipulation</td>
<td>4</td>
</tr>
<tr>
<td>Biol 4522</td>
<td>Laboratory in Protein Analysis, Proteomics and Protein Structure</td>
<td>3</td>
</tr>
</tbody>
</table>

All chemistry course work must be taken in residence at Washington University to be eligible to earn a chemistry major.

A minimum grade of C- must be earned in each course to count toward the chemistry major.

Note: Per the College of Arts & Sciences guidelines, if a student has a major and a minor or has two minors, only introductory (100- and 200-level) courses may be counted, when relevant, toward the requirements of both programs. All advanced (300- and 400-level) courses must be unique to each program, i.e., no advanced course may “double-count” for the course work needed to fulfill either program’s minimal requirements. Should a student’s major/minor programs require the same course, a departmentally-sanctioned elective must be chosen to replace the course in one of the programs.

Additional Information

Latin Honors for the Major in Chemistry: To qualify for Latin Honors, students must complete a minimum of 21 units in advanced courses in chemistry, among which must be included:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 401</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Chem 402</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Chem 461</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

and two additional advanced courses in chemistry.

Students must also complete two additional laboratories.

Students must choose one synthetic laboratory:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 358</td>
<td>Organic Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Chem 470</td>
<td>Inorganic Chemistry Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

and one physical laboratory:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 435</td>
<td>Nuclear and Radiochemistry Lab</td>
<td>3</td>
</tr>
<tr>
<td>Chem 445</td>
<td>Instrumental Methods: Physical Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Neither Chem 490 Introduction to Research nor Chem 495 Advanced Undergraduate Research in Chemistry can be used to satisfy the advanced laboratory requirements, but Chem 495 can be used to satisfy an elective.

Latin Honors for the Major in Chemistry with Concentration in Biochemistry: To qualify for Latin Honors, students must complete a minimum of 21 units in advanced courses, including either one of the following five courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 334</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>Biol 349</td>
<td>Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>Chem 453</td>
<td>Bioorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Chem 464</td>
<td>Inorganic Biochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>
Chem 485 Nucleic Acids 3
or a second laboratory course in advanced chemistry or biology
chosen from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 358</td>
<td>Organic Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Chem 435</td>
<td>Nuclear and Radiochemistry Lab</td>
<td>3</td>
</tr>
<tr>
<td>Chem 445</td>
<td>Instrumental Methods: Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Chem 470</td>
<td>Inorganic Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Biol 437</td>
<td>Laboratory on DNA Manipulation</td>
<td>4</td>
</tr>
<tr>
<td>Biol 4522</td>
<td>Laboratory in Protein Analysis, Proteomics and Protein Structure</td>
<td>3</td>
</tr>
<tr>
<td>Biol 4520</td>
<td>Protein Function in Model Cellular Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Departmental Honors for the Majors in Chemistry and Chemistry with a Concentration in Biochemistry: To graduate "with distinction," a student must maintain a Chemistry GPA of 3.5 and complete at least one semester of Chem 490 research. To graduate "with high distinction," a student must maintain a Chemistry GPA of 3.65 and complete at least two semesters of chemistry research, one of which must be Chem 495. To graduate "with highest distinction," a student must maintain a Chemistry GPA of 3.8 and complete at least two semesters of chemistry research, one of which must be Chem 495. Chemistry research is defined as a research project performed under the direction of a Chemistry faculty member, or a research project approved by the Chemistry Department Undergraduate Work Committee. A Chemistry GPA is calculated from the grades received in chemistry courses and chemistry prerequisites. The level of Departmental Honors a student achieves will appear on the student's final transcript.

Minors

The Minor in Chemistry

Units required: 27 in chemistry; 17 in math and physics

Required courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 111A</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Chem 112A</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Chem 151</td>
<td>General Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>Chem 152</td>
<td>General Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>Chem 261</td>
<td>Organic Chemistry I with Lab</td>
<td>4</td>
</tr>
<tr>
<td>Chem 262</td>
<td>Organic Chemistry II with Lab</td>
<td>4</td>
</tr>
<tr>
<td>Math 131</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>Math 132</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>Math 233</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>Physics 117A</td>
<td>General Physics I</td>
<td>4</td>
</tr>
</tbody>
</table>

Elective courses:

9 units of chemistry encompassing three courses in at least two subdisciplines. Biol 451 General Biochemistry may be used to satisfy one course of the three required. Courses must be 300-level or above, but Chem 490 Introduction to Research is specifically excluded.

All chemistry course work must be taken in residence at Washington University to be eligible to earn a chemistry minor. A minimum grade of C- must be earned in each course to count toward the chemistry minor.

Note: Per the College of Arts & Sciences guidelines, if a student has a major and a minor or has two minors, only introductory (100- and 200-level) courses may be counted, when relevant, toward the requirements of both programs. All advanced (300- and 400-level) courses must be unique to each program, i.e., no advanced course may "double-count" for the course work needed to fulfill either program's minimal requirements. Should a student's major/minor programs require the same course, a departmentally-sanctioned elective must be chosen to replace the course in one of the programs.

Courses

Visit online course listings to view semester offerings for L07 Chem [https://courses.wustl.edu/CourseInfo.aspx?sch=L&dept=L07&crslvl=1:4].

L07 Chem 111A General Chemistry I
Systematic treatment of fundamental chemical principles and their applications. Particular reference to the concept of energy and its uses, gas laws, kinetic molecular theory, atomic and molecular structure, chemical bonding, and the periodic classification of the elements. Prerequisites: two years of high school algebra and one of high school chemistry, or permission of instructor.
Credit 3 units. A&S: NS, QA A&S IQ: NSM, AN Art: NSM BU: SCI

L07 Chem 112A General Chemistry II
Introduction to the principles of chemical equilibrium and to ionic solutions. Topics: ionic equilibria, galvanic cells, elementary chemical thermodynamics and kinetics, and molecular structure of coordination compounds. Three lecture hours and a problem-solving subsection hour. Sign-up for subsections is conducted during the first two weeks of the semester. Prerequisite: Chem 111A or permission of instructor.
Credit 3 units. A&S: NS, QA A&S IQ: NSM, AN Art: NSM BU: SCI
L07 Chem 151 General Chemistry Laboratory I
This course provides an introduction into basic laboratory techniques, the experimental method, and the presentation of scientific data, as well as direct experience with chemical principles and the properties and reactions of substances. The course is designed to be taken concurrently with the first semester of the general chemistry lecture series (Chem 111A). Students attend a lab lecture every Monday and perform experiments during their scheduled lab section every week. Consult course listings for more information. Prerequisite: concurrent enrollment in Chem 111A or permission of the instructor.
Credit 2 units. A&S: NS A&S IQ: NSM Art: NSM

L07 Chem 152 General Chemistry Laboratory II
This course provides an introduction to basic laboratory techniques, the experimental method, and the presentation of scientific data as well as direct experience with chemical principles and the properties and reactions of substances. The topics and experiments in this course complement the material covered in the Chem 112A lecture course. Students attend one four-hour laboratory session and one one-hour laboratory lecture every other week. Prerequisite: concurrent enrollment in Chem 112A or permission of the instructor.
Credit 2 units. A&S: NS A&S IQ: NSM Art: NSM

L07 Chem 181 Freshman Seminar in Chemistry
A weekly lecture by a chemistry faculty member or other scientist from academia or industry on the lecturer’s current research activities. The goal is to provide students with a sampling of current research activities dealing with fundamental and applied problems in science and society that are being approached from a chemical point of view. Students see how fundamental chemical principles can be obtained from experiment and theory and used to both better understand and make better the world we live in. Each week a different scientist presents a lecture or offers an additional activity. Intended primarily for freshmen who anticipate majoring in science, but interested upperclass students also should find the lectures interesting and stimulating. Students are expected to attend all lectures and associated activities during the semester. Enrollment is limited. Credit/no credit only.
Credit 1 unit. A&S: NS A&S IQ: NSM Art: NSM

L07 Chem 182 Chemistry for Concerned Citizens: Topics in Energy, the Environment, and More
This course is designed to provide an overview of chemistry as it relates to problems in environmental science, energy and related topics. It is constructed such that all students, irrespective of their major area of study, can learn about chemistry in these contexts. The course is intended to be highly interdisciplinary; therefore, it covers subjects including chemistry, physics, engineering, geology, biology, environmental policy and others.
Credit 3 units. A&S IQ: NSM, AN Arch: NSM Art: NSM

L07 Chem 261 Organic Chemistry I with Lab
The first part of a two-semester survey of organic chemistry. The course includes an introduction to organic structures, reactions and reaction mechanisms. The laboratory meets on alternate weeks and include an introduction to laboratory methods in organic chemistry, including separation and methods of purification of organic compounds. Prerequisites: Chem 112A, Chem 152.

L07 Chem 262 Organic Chemistry II with Lab
A course covering certain areas of organic chemistry in more detail than the prerequisite course, with special emphasis on the mechanisms and the synthetic applications of organic reactions and on the organic chemistry of biological compounds. The laboratory meets eight times and includes organic synthesis and spectroscopic techniques. Required course for chemistry majors. Prerequisite: Chem 261.
Credit 4 units. A&S: NS A&S IQ: NSM Art: NSM

L07 Chem 290 Freshman and Sophomore Research
Introduction to laboratory research for first- and second-year students. Students work under supervision of a faculty sponsor. Prerequisite: permission of the sponsor and the Department of Chemistry. Credit/no credit only.
Credit variable, maximum 3 units. A&S: NS A&S IQ: NSM Art: NSM

L07 Chem 299 Chemical Laboratory Safety
An overview of current laboratory safety, regulatory and compliance practices. Safety and compliance issues that impact chemical, biological and materials research is covered through a series of lectures, demonstrations, activities and laboratory exercises.
Credit 0.5 units. A&S: NS A&S IQ: NSM Art: NSM BU: SCI

L07 Chem 358 Organic Chemistry Laboratory II
Initially, problem solving in organic chemistry is emphasized through an introduction to the methods of qualitative organic analysis, including the use of chromatographic and spectroscopic techniques. Each student then selects an independent synthetic project to perform. Prerequisite: Chem 262. Six laboratory hours per week. Lectures held three hours a week for the first half of the semester.
Credit 4 units. A&S: NS, WI A&S IQ: NSM, WI Arch: NSM Art: NSM

L07 Chem 400 Physical Science in 12 Problems
Exercises related to general chemistry, classical mechanics, quantum mechanics, statistical mechanics, thermodynamics and kinetics, are solved with numerical software. Each exercise is accompanied by a lecture, a software template solving a problem and a related take-home problem. The software allows us to focus on, and treat in a transparent fashion, physical problems without the unworlty idealizations and contrivances found in textbooks. Prerequisites: Chem 111A Chemistry I, concurrent enrollment with Chem 401 and prior or concurrent enrollment in Physics 117A Physics I.
Credit 1 unit. A&S: NS A&S IQ: NSM Art: NSM BU: SCI

L07 Chem 401 Physical Chemistry I
Introduction to quantum chemistry (with applications to elementary spectroscopy) and kinetics. Prerequisites: Chem 111A-Chem 112A, Math 233; prior completion of Physics 117A and Physics 118A is strongly encouraged (but concurrent enrollment in Physics 117A is accepted); or permission of instructor. Required course for all Chemistry majors.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM BU: SCI

L07 Chem 402 Physical Chemistry II
Introduction to chemical thermodynamics, statistical mechanics and transport phenomena. Required course for all Chemistry majors. Prerequisites: Chem 111A–Chem 112A, Chem 401, Math 233, prior completion of Physics 117 and 118 is strongly encouraged (but prior completion of Physics 117 and concurrent enrollment in Physics 118 are accepted); or permission of instructor.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM BU: SCI

L07 Chem 403 Chemical Kinetics
This lecture course provide an introduction to the kinetics of chemical reactions for graduate and upper-level undergraduate science and engineering students. Bulk and molecular level considerations are discussed and provide a foundation for the understanding of chemical reaction mechanisms and the techniques used for their study. Students gain an understanding of the importance and significance of the rate laws of reactions and in particular the reaction rate constant. Details of how the environment in which reactions occur (e.g., gas phase, solution phase and surface reactions) and molecular structure are reflected in the rate constant are discussed. Examples such as catalytic loss cycles in the atmosphere, enzyme catalysis, combustion systems, chain reactions and explosions are presented in detail to illustrate how the fundamental principles of chemical kinetics can be applied to predict reaction rates, chemical reactivity and the outcomes of particular processes.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM BU: SCI

L07 Chem 426 Inorganic Electrochemistry and Photochemistry
An understanding of electrochemical processes is critical in describing the behavior of batteries, photovoltaics, solar fuel systems, and other important devices used in energy conversion and environmental remediation. This course will cover modern inorganic electrochemistry, photochemistry, and photoelectrochemistry from a microscopic perspective of solid-electrolyte interfaces. The course material will start with the thermodynamics of solid-electrolyte interfaces and the kinetics of electron transfer across these interfaces. Electroanalytical techniques, such as cyclic voltammetry and potential step methods, will be described to understand the mechanism of various electrochemical and photochemical reactions. The second half of the course will cover several applications of electrochemical cells, including batteries, fuel cells, and photoelectrochemical cells. Prerequisites: Chem 461 or Chem 465 or consent of instructor.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM BU: SCI

L07 Chem 435 Nuclear and Radiochemistry Lab
Application of radiochemical techniques to problems in chemistry, physics and nuclear medicine. Prerequisites: 3 units of physical chemistry and permission of instructor. One lecture hour and five hours of laboratory a week.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM BU: SCI

L07 Chem 436 Radioactivity and Its Applications
Introduction to the production and decay of radioactive nuclides, the structure and properties of nuclei, and the applications of nuclear and radiochemical techniques to current scientific problems. Prerequisites: one year each of chemistry, mathematics and physics.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM BU: SCI

L07 Chem 437 Radioactivity and Radiation Safety
The following topics are discussed: (a) general properties of nuclei; (b) laws of radioactive decay; (c) interaction of radiation with matter; (d) radiation detectors; (e) radiation dosimetry; (f) biological effects of radiation exposure; (g) radiation safety, safety test, regulations; (h) basics of radioisotope production.
Credit 1 unit. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM BU: SCI

L07 Chem 445 Instrumental Methods: Physical Chemistry
A course providing direct hands-on experience with the principles of physical chemistry (thermodynamics, quantum, kinetics) and associated experimental methods and instrumentation, including optical, infrared, and nuclear and electron spin resonance, electrochemistry, calorimetry, laser kinetics, and basic electronics. Prerequisite: Chem 401 or concurrent enrollment in Chem 402.
Credit 3 units. A&S: NS, WI A&S IQ: NSM, WI Arch: NSM Art: NSM BU: SCI

L07 Chem 450 Mechanistic Organic Chemistry
The first half of a sequence of two semesters, followed by Chem 554 in the spring, encompassing important topics in physical organic chemistry. The first semester is devoted to the fundamental concepts of mechanistic organic chemistry. The major classes of organic reactions are surveyed from a mechanistic perspective. Prerequisite: Chem 262 or permission of the instructor.
Credit 3 units. A&S IQ: NSM Arch: NSM Art: NSM BU: SCI

L07 Chem 451 Organic Chemistry III
A lecture course that builds on the material in Chem 261 and Chem 262, covering in more detail certain topics in those courses while also introducing new topics. A transition to graduate-level study in organic chemistry; recommended for chemistry, biochemistry and biology majors. Prerequisite: Chem 262.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM BU: SCI

L07 Chem 453 Bioorganic Chemistry
The focus of this course in an overview of modern medicinal chemistry from the selection of a therapeutic target through
the FDA-approval process. Each aspect is exemplified by examples of drugs currently in clinical use or in late-stage development. One aspect of particular interest to synthetic chemists is the underlying development chemistry that often determines the competitive success of a product. Topics covered include peptidomimetic HIV protease inhibitors, topoisomerase inhibitors, HMGCoA-reductase inhibitors (Liptor, etc.), receptor tyrosine-kinase inhibitors (Gleevec, etc.), a synthetic mimic of superoxide dismutase, and several others depending on the interests of the participants. Students are responsible for presenting to the class the synthetic routes developed for the discovery and commercialization of these drugs focusing on development chemistry. Prerequisite: Chem 262.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 458 Chemical Reaction Mechanism Journal Club
This seminar meets for one hour each week. During the meetings, student participants are responsible for presenting topics from the current literature. The format of the presentation varies from informal talks to student-authored problem sets. Attendance at meetings is strongly recommended for all students who are currently taking the organic cumulative examinations. Prerequisite: Chem 262.
Credit 1 unit. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 459 Organometallic Chemistry
Survey of organometallic compounds with discussion of their synthesis, structure, spectroscopy and reactivity. Prerequisite: Chem 252.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 461 Inorganic Chemistry
Introduction to modern inorganic chemistry; emphasis on relation of structure and bonding to the chemical and physical properties of compounds. Prerequisite: Chem 401 or permission of instructor.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 464 Inorganic Biochemistry
A class in biological chemistry that emphasizes the role of metals in electron transfer and enzymatic catalysis. After a brief survey of essential concepts from biology, coordination chemistry and spectroscopy, topics include: electron transfer systems; oxygen transport and activation; metal ion acquisition, transport and homeostasis; enzymes catalyzing atom transfer reactions and radical-mediated processes. Prerequisites: Chem 252; Chem 461 recommended but not required.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 465 Solid-State and Materials Chemistry
The course begins with basic crystallography and common inorganic structure types. With the aid of computer modeling, students learn to analyze, index and refine X-ray powder-diffraction data. Students are then taught to use phase diagrams to assess the compositions and microstructures of materials produced by various synthetic or processing methods. Crystal nucleation and growth, defects, and ion-conduction mechanisms also are introduced. The course concludes with an analysis of the mechanical properties of materials from a chemistry perspective. What makes some materials strong, stiff and resistant to fracture? Prerequisites: Chem 111A-Chem 112A.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 470 Inorganic Chemistry Laboratory
A laboratory course emphasizing both the synthesis of inorganic compounds and the study of their physical properties. Laboratory exercises will introduce novel synthetic techniques such as high-temperature synthesis and vacuum line manipulations. Compounds will be spectroscopically characterized by UV-visible, gas-phase infrared, and multinuclear and dynamic NMR spectroscopy. Measurements of electrochemical behavior, magnetic susceptibility, and electrical conductivity will be performed. Prerequisite: Chem 461 or consent of the instructor. A Writing Intensive option is available with the permission of the instructor.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 470W Inorganic Chemistry Laboratory — Writing Intensive
A laboratory course emphasizing both the synthesis of inorganic compounds and the study of their physical properties. Laboratory exercises introduce novel synthetic techniques such as high-temperature synthesis and vacuum line manipulations. Compounds are spectroscopically characterized by UV-visible, gas-phase infrared, and multinuclear and dynamic NMR spectroscopy. Measurements of electrochemical behavior, magnetic susceptibility and electrical conductivity are performed. Prerequisite: Chem 461 or consent of the instructor. This course satisfies the writing-intensive requirement.
Credit 3 units. A&S: NS, WI A&S IQ: NSM, WI Arch: NSM Art: NSM

L07 Chem 477 Modern Medicinal Chemistry
The focus of this course in an overview of Modern Medicinal Chemistry from the selection of a therapeutic target through the FDA-approval process. Each aspect is exemplified by examples of drugs currently in clinical use, or in late-stage development. One aspect of particular interest to synthetic chemists is the underlying development chemistry that often determines the competitive success of a product. Topics covered include peptidomimetic HIV protease inhibitors, topoisomerase inhibitors, HMGCoA-reductase inhibitors (Liptor, etc.), receptor tyrosine-kinase inhibitors (Gleevec, etc.), a synthetic mimic of superoxide dismutase, and several others depending on the interests of the participants. Students are responsible for presenting to the class the synthetic routes developed for the discovery and commercialization of these drugs focusing on development chemistry. Prerequisite: Chem 262 or permission of the instructor.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 478 Molecular Modeling
A survey of a wide range of techniques and applications in molecular modeling and computational chemistry, including "ab
L07 Chem 488 Modern Spectroscopy
This course focuses on the fundamental principles and methodologies associated with numerous optical spectroscopy techniques that are commonly utilized in physical and life sciences research laboratories. In order to develop a solid understanding of the material as well as best practices, and the strengths and limitations of the techniques, this course combines lectures with laboratory experiments. Students also learn how to analyze and interpret data and succinctly describe their results. During one lecture each week the underlying principles of a specific type of spectroscopy are presented. The second lecture each week is spent covering the general details of the instrumentation and methods for acquiring spectra on different types of samples. The students then acquire spectra using the spectroscopic methods presented during the laboratory session. The students independently analyze the data and write brief reports of their findings. During the last two weeks of class, pairs of students are given an unknown, and they need to identify and characterize the sample. Students then write and submit a final report describing this independent research and their findings.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 490 Introduction to Research
Advanced laboratory work on a selected topic in chemistry. Prerequisite: permission of the department. Credit/no credit only. If this course is to be submitted for Honors, the student must file the Honors form available at the chemistry department office before the end of junior year. Arrangements for registration should be completed during the preregistration period.
Credit variable, maximum 6 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 495 Advanced Undergraduate Research in Chemistry
The student conducts research supervised by a chemistry department faculty member. At the end of the semester, the chemistry supervisor chairs a faculty committee to evaluate an oral public presentation and/or a concise written report, and a letter grade is assigned. The committee members and completion requirements must be approved by the supervisor prior to registration. This course may provide a Capstone Experience but does not fulfill the Writing-Intensive requirement. The units earned may be applied as elective advanced credits toward a chemistry major with Latin honors eligibility. Course may be taken only once for credit. Prerequisite: Chem 480 and/or other advanced electives or research experience specified by the supervisor.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

initio” quantum mechanics, semi-empirical MO theory, molecular mechanics, molecular dynamics simulation, coarse-grained models, electrostatic methods and biomolecular structure prediction. In addition to traditional lectures, students gain hands-on experience with a variety of computer modeling programs, and are expected to complete an individual project in their particular area of interest. Prerequisites: previous course experience in physical chemistry at the level of Chem 401–Chem 402, or permission of the instructor. Some familiarity with computer basics (text editing, simple scripting and using the “command line” in either Linux, Windows or Mac OS X) is recommended.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 479 Computational Chemistry and Molecular Modeling
Lectures cover the background, practice and applications of computational chemistry to the modeling of the structures and chemical reactions of organic molecules. Different levels of calculation are presented, from molecular mechanics calculations and Hückel molecular orbital theory, through semi-empirical and ab initio self-consistent field calculations with correlation energy corrections, and density functional theory. Hands-on experience performing calculations is an important element in this course.
Credit 3 units. A&S: NS, WI A&S IQ: NSM, WI Arch: NSM Art: NSM

L07 Chem 481 General Biochemistry I
Topics include the properties and structures of biomolecules, including amino acids, nucleotides, lipids, carbohydrates, proteins and nucleic acids. Additional topics include enzyme kinetics and mechanisms, membrane structure and properties, protein folding, an introduction to metabolism, oxidative phosphorylation, and photosynthesis. This course is the first semester of an integrated two-semester sequence. The second course is Chem 482. Prerequisites: Biol 2970, Chem 262.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 482 General Biochemistry II
Continuation of General Biochemistry I. Topics include carbohydrate, lipid and amino acid metabolism, signal transduction, transport across membranes, DNA replication and repair, transcription and translation, molecular motors, mechanisms of drug action and natural products biosynthesis. Prerequisite: Chem 481 or Biol 481.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM

L07 Chem 485 Nucleic Acids
Structure, synthesis, properties, and interactions of nucleic acids, and the design and synthesis of nucleic acid-based and/or targeted drugs, probes and tools. Topics: primary, secondary and tertiary structure; topological and thermodynamic properties; biological and chemical synthesis; DNA chips; PCR; site-directed natural and unnatural mutagenesis; chemical evolution (SELEX); ribozymes; phage display; carcinogen, drug and protein interactions; affinity cleaving; ultraviolet light and ionizing radiation damage, DNA repair of mutagenesis; design and synthesis of anti-sense and anti-gene probes and drugs. Extensive use is also made of molecular modeling and the protein databank of nucleic acid structures. Prerequisites: Chem 251 and Chem 252 or equivalent.
Credit 3 units. A&S: NS A&S IQ: NSM Arch: NSM Art: NSM