Geographic Information Systems

Geographic information systems (GIS) display and manage all types of data over time, usually in the form of maps, charts and reports that help with the analysis of patterns and trends.

GIS technology, which is easily integrated into any organization’s information system, provides a quick and effective method for sharing data visually and for solving spatial problems. GIS is widely used in many fields and industries, including environmental science, architecture, engineering, medicine, municipal government, public health, social work, business, and a variety of research enterprises.

The 18-unit Certificate in Geographic Information Systems offered through University College teaches both fundamental and advanced concepts and skills, including the design of GIS projects, the operation of GIS software, cartographic output, spatial analysis, and industry-specific applications of GIS. The certificate targets working professionals seeking course work and skill enhancement in the field as well as students wishing to complement their academic interests with additional training in GIS.

Contact: Bill Winston
Phone: 314-935-8426
Email: billwinston@wustl.edu
Website: http://ucollege.wustl.edu/programs/certificates/geographic-information-systems

Requirements

Certificate in Geographic Information Systems

Required Courses: 15 units

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIS 200</td>
<td>Introduction to GIS</td>
<td>3</td>
</tr>
<tr>
<td>GIS 300</td>
<td>Advanced GIS</td>
<td>3</td>
</tr>
<tr>
<td>GIS 303</td>
<td>Digital Cartography</td>
<td>3</td>
</tr>
<tr>
<td>GIS 421</td>
<td>Spatial Data Modeling and Design</td>
<td>3</td>
</tr>
<tr>
<td>GIS 422</td>
<td>GIS Clinic</td>
<td>3</td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Elective Courses: 3 units

U90 GIS 200 Introduction to GIS
This course introduces students to the fundamental principles and applications of geographic information systems (GIS) as well as their underlying geospatial science and spatial thinking. This problem-based course explores applications of GIS to spatial questions in the areas of social science, business, the humanities, and earth sciences. Example topics include understanding spatial data types; map coordinate systems and projections; basic spatial data analysis; acquiring, editing, creating, and managing geospatial data; and processing and visualizing data using GIS. This hands-on course works through problems using (mainly) ESRI ArcGIS software (including ArcMap and ArcCatalog), but other open-source tools will also be introduced. Students who complete this course should be able to apply the skills to think through a spatial problem and employ GIS tools to address it.
Credit 3 units.

U90 GIS 300 Advanced GIS
This course is designed to move the student beyond fundamental data presentation and map production skills. Lectures will introduce key concepts and lead into hands-on exercises to reinforce understanding and provide more depth. Topics are selected to help familiarize the student with advanced GIS analysis tools and techniques. A semester project will provide experience in the planning and execution of real-world projects using geospatial technology. Course objectives include applying fundamental GIS concepts, performing spatial analysis, developing proficiency with core ArcGIS software and selected extensions, resolution of problems, and efficient delivery of results. Completion of an introductory level GIS course is a prerequisite.
Credit 3 units. Arch: NSM Art: NSM

U90 GIS 303 Digital Cartography
In today’s world, it is imperative that students develop the necessary skills to communicate their ideas to a large audience in an efficient manner. Graphics and visual representations are one of the most effective ways to neatly convey complex data sets to readers. This course presents both theoretical and hands-on mapping and graphical problems to students. Students will learn to solve these problems with self-created solutions. The course teaches students the basics of GIS-based mapping for producing publishable work. Students will develop basic skills in computer-aided mapping and computer drafting primarily using the ArcGIS Suite of desktop software, ArcGIS and Google online web mapping, and other tools. Students will also be introduced to other mapping or statistical programs as needed.
U90 GIS 310 GIS Programming
This course introduces students to the use of programming in desktop and web geographic information systems (GIS). The course will be divided into two units: the first unit will focus on scripting for task automation, while the focus of the second unit will be web development. Topics include general programming concepts, using spatial and scientific site-packages for both Python and R, the ArcGIS API for JavaScript and other web mapping APIs, and consuming and publishing map services. Prerequisite: Introduction to GIS (U90 GIS 200) or Applications of GIS (EnSt 380/580). Credit 3 units.

U90 GIS 310M GIS Programming
Online version of the course U90 310. This course introduces students to the use of programming in desktop and web geographic information systems (GIS). The course will be divided into two units: the first unit will focus on scripting for task automation, whereas the focus of the second unit will be web development. Topics include general programming concepts, using spatial and scientific site-packages for both Python and R, the ArcGIS API for JavaScript and other web mapping APIs, and consuming and publishing map services. Prerequisite: Introduction to GIS (U90 GIS 200) or Applications of GIS (EnSt 380/580). Credit 3 units. UColl: OLI

U90 GIS 313H Open Source GIS
Online hybrid version of the course U90 313. This course explores the open source options available for GIS users. Most students learn GIS on ESRI's ArcGIS platform. While robust, ArcGIS comes with a heavy price tag and may not be feasible for all GIS users. In this course, we will not only learn about how to find open source (free) GIS software, we will also learn how to use four of the major platforms available. We will start by learning QGIS, which is comparable to ESRI's ArcMap/ArcGIS Pro. Students will become intermediate users of QGIS. During the second half of the semester, we will spend time learning R, GeoDa and GRASS GIS. Prerequisite: an introductory GIS course or permission of the instructor. Credit 3 units. UColl: OLI

U90 GIS 421H Spatial Data Modeling and Design
Online hybrid version of the course U90 421; fulfills the same program requirements. This course expands on the fundamental principles of geographic information systems (GIS) and introduces advanced spatial database concepts and a visual programming environment for automating geoprocessing tasks. The course is divided into two parts: the first exploring spatial database design with emphasis on the ESRI Geodatabase and the second focusing on automating workflows using ESRI ModelBuilder. Topics include data needs assessment; conceptual modeling, logical design, and physical implementation; using models to perform multistep spatial analyses; and the automation of repetitive processes with iteration tools. Lectures are supplemented with lab exercises to develop proficiency and problem-solving skills using ArcGIS software and associated tools. Prerequisite: the course should be taken after or concurrently with Advanced GIS (U90 GIS 300). Credit 3 units.

U90 GIS 422 GIS Clinic
The GIS Clinic is the culminating experience in the GIS Certificate Program. Students complete a project in a real work setting to provide direct experience with geospatial concepts and data. Students apply concepts and tools covered in all courses comprising the GIS Certificate program. GIS Clinic requires students to work on projects beginning to end, both under supervision and independently. The Clinic provides professional services to the university community as well as to outside organizations. Possible clinic settings include working with faculty on research projects using GIS, working with local organizations to develop GIS data, and working on regional GIS initiatives. Prerequisite: All other GIS Certificate requirements are expected to be completed prior to enrolling in the Clinic. Credit 3 units.

U90 GIS 425 Public Health Applications of GIS
Geographic information systems (GIS) are increasingly central to public health practice, and the goal of this course is to familiarize students with the principles, methods, and techniques necessary to apply GIS in diverse public health practice settings. Case studies will be presented to introduce the application of GIS technologies. Students will learn from examples that demonstrate the spatial characterization of social and environmental conditions. Hands-on exercises and a student project will provide practical experience in the use of...
GIS software tools and methods for organizing, investigating, and describing public health information and data. Prerequisite: Introduction to GIS (U90 GIS 200) or Applications of GIS (EnSt 380/580). Credit 3 units.

U90 GIS 427 Public Sector Applications of GIS
This course examines the use of geographic information systems (GIS) and geographic information science in the public sector, with a focus on GIS applications in local government and municipality services. The course requires an understanding of fundamental GIS principles, and will address practical application of fundamental and advanced GIS concepts and practices. Topics addressed include GIS implementation at the organization and department levels, problem solving with GIS, and geospatial project management. Lectures are integrated with lab sessions using GIS software including ArcGIS, Google Earth, and Open Street Map. Prerequisite: Introduction to GIS (U90 GIS 200) or Applications of GIS (EnSt 380/580). Credit 3 units. UColl: OLH