Materials Science & Engineering

The Institute of Materials Science & Engineering (IMSE) at Washington University in St. Louis offers a unique, interdisciplinary PhD in Materials Science & Engineering that crosses traditional departmental and school boundaries. The field of materials science and engineering focuses on the study, development and application of new materials with desirable properties, with the goal of enabling new products and superior performance regimes. Disciplines in the physical sciences (e.g., chemistry, physics) play a central role in developing the fundamental knowledge that is needed to design materials for a variety of engineering applications (e.g., mechanical engineering, electrical engineering, biomedical engineering). Building on training that spans from fundamental to applied sciences, materials scientists and engineers integrate this fundamental knowledge to develop new materials and match them with appropriate technological needs.

The IMSE is well positioned to address the needs of a student seeking a truly interdisciplinary experience. The IMSE brings together a diverse group of faculty from departments in Arts & Sciences, the McKelvey School of Engineering, and the School of Medicine. The IMSE also oversees shared research and instrument facilities, develops partnerships with industry and national laboratories, and facilitates outreach activities.

Current focused areas of research and advanced graduate education within the IMSE include the following:

- Artificial intelligence in materials discovery and design
- Biomedical, bio-derived, and bio-inspired materials
- Materials for energy and environmental technologies
- Quantum and photonic materials and devices

Contact: Beth Gartin
Phone: 314-935-7191
Email: bgartin@wustl.edu
Website: http://imse.wustl.edu

Professors

Jianjun Guan (https://engineering.wustl.edu/faculty/Jianjun-Guan.html)
Professor, Mechanical Engineering & Materials Science
PhD, Zhejiang University
Professor Guan’s research interests are in biomimetic biomaterials synthesis and scaffold fabrication; bioinspired modification of biomaterials; injectable and highly flexible hydrogels; bioimageable polymers for MRI and EPR imaging and oxygen sensing; mathematical modeling of scaffold structural and mechanical properties; stem cell differentiation; neural stem cell transplantation for brain tissue regeneration; and bone and cardiovascular tissue engineering.

Kenneth F. Kelton (https://physics.wustl.edu/people/kenneth-f-kelton/)
Arthur Holly Compton Professor of Arts & Sciences, Physics
PhD, Harvard University
Professor Kelton is involved in the study and production of titanium-based quasicrystals and related phases; fundamental investigations of time-dependent nucleation processes; modeling of oxygen precipitation in single crystal silicon; structure of amorphous materials; relation between structure and nucleation barrier; and hydrogen storage in quasicrystals.

Vijay Ramani (https://engineering.wustl.edu/Profiles/Pages/Vijay-Ramani.aspx)
Roma B. & Raymond H. Wittcoff Distinguished University Professor of Environment & Energy
PhD, University of Connecticut
Vijay Ramani’s research interests lie at the confluence of electrochemical engineering, materials science and renewable and sustainable energy technologies. The National Science Foundation, Office of Naval Research, ARPA-E, and Department of Energy have funded his research, with mechanisms including an NSF CAREER award (2009) and an ONR Young Investigator Award (ONR-YIP; 2010).

Srikanth Singamaneni (https://engineering.wustl.edu/Profiles/Pages/Srikanth-Singamaneni.aspx)
The Lilyan & E. Lisle Hughes Professor, Mechanical Engineering & Materials Science
PhD, Georgia Institute of Technology
Professor Singamaneni’s research interests include plasmonic engineering in nanomedicine (in vitro biosensing for point-of-care diagnostics, molecular bioimaging, nanotherapeutics); photovoltaics (plasmonically enhanced photovoltaic devices); surface-enhanced Raman scattering (SERS)-based chemical sensors, with particular emphasis on the design and fabrication of unconventional and highly efficient SERS substrates; hierarchical organic/inorganic nanohybrids as multifunctional materials; bioinspired structural and functional materials; polymer surfaces and interfaces; responsive and adaptive materials and scanning probe microscopy; and surface force spectroscopy of soft and biological materials.

Faculty

Director

Katharine M. Flores (https://engineering.wustl.edu/faculty/Katharine-Flores.html)
Christopher I. Byrnes Professor, Mechanical Engineering & Materials Science
PhD, Stanford University
Professor Flores’ primary research interest is the mechanical behavior of high-performance structural materials, with particular emphasis on understanding structure-processing-property relationships in bulk metallic glasses and their composites.
Professor Mishra’s research interest is to develop quantitative structure-property correlations in materials starting from the atomic scale. To develop such correlations, his group synergistically combines electronic structure calculations with atomic-resolution electron microscope imaging and spectroscopy. The end goal is the rational design of materials with properties tailored for electronic, optical, magnetic and energy applications. Current research topics include perovskite materials for photovoltaic and optoelectronic applications, novel electrocatalysts, oxidizers, and wide-bandgap semiconductors.

Jai Rudra (https://engineering.wustl.edu/faculty/Jai-Rudra.html)
Associate Professor, Biomedical Engineering
PhD, Louisiana Tech University
Jai Rudra’s lab is interested in the development of nanoscale biomaterials such as nanofibers, nanoparticles, virus-like particles, and hydrogels for engaging the immune system to induce protective antibody and cell-mediated immune responses against diseases such as tuberculosis, melanoma, and flavivirus infections (i.e., West Nile and Zika). He is also investigating the development of vaccines against drugs of addiction such as cocaine.

Elijah Thimsen (https://engineering.wustl.edu/faculty/Elijah-Thimsen.html)
Associate Professor, Energy, Environmental & Chemical Engineering
PhD, Washington University in St. Louis
Professor Thimsen’s research focus is on the synthesis of nanostructured materials and molecular chemicals using non-equilibrium plasma and aerosol approaches.

Assistant Professors

Sang-Hoon Bae (https://engineering.wustl.edu/faculty/Sang-Hoon-Bae.html)
Assistant Professor, Mechanical Engineering & Materials Science
PhD, University of California, Los Angeles
Professor Bae’s research group focuses on tackling the challenges in materials science with thermodynamics, kinetics, and solid-state physics.

Peng Bai (https://engineering.wustl.edu/faculty/Peng-Bai.html)
Assistant Professor, Energy, Environmental & Chemical Engineering
PhD, Tsinghua University, Beijing
Professor Bai’s research focuses on the development of next-generation batteries. Knowledge and tools developed in the Bai Group also apply to and benefit the design of other electrochemical energy systems, like supercapacitors and fuel cells.

Erik Henriksen (https://physics.wustl.edu/people/erik-henriksen/)
Assistant Professor, Physics
PhD, Columbia University
Professor Henriksen’s lab research is centered on the properties of electrons confined to two dimensions. This remarkable system has yielded a tremendous amount of interesting and important physics over the past several decades, from the integer and fractional quantum...
Hall effects to the groundbreaking discoveries of graphene and other atomically thin crystals and especially to the recent realization of the topological nature of the electronic structure of a surprising number of materials both novel and familiar.

Nathaniel Huebsch (https://engineering.wustl.edu/faculty/Nathaniel-Huebsch.html)
Assistant Professor, Biomedical Engineering
PhD, Harvard University

Professor Huebsch’s research focus is in basic and translational stem cell mechanobiology, with specific focus on hydrogels to control cell-mediated tissue repair and three-dimensional, iPSC-based heart-in-a-dish models to study the influence of mechanical loading and genetics on arrhythmia and contractility.

Sheng Ran (https://physics.wustl.edu/people/sheng-ran/)
Assistant Professor, Physics
PhD, Iowa State University

Professor Ran’s research aims to realize and understand exotic states of quantum materials using combined techniques of bulk crystal synthesis, electric and thermal transport measurements under extreme temperature, pressure and magnetic field conditions, and neutron and high-energy X-ray scattering.

Assistant Professor, Electrical & Systems Engineering
PhD, University of Southern California

Professor Wang’s research focus is on two-dimensional semiconductor nanoelectronics and optoelectronics, stretchable electronics, printed electronics, and sensors and actuators.

Patricia Weisensee (https://engineering.wustl.edu/faculty/Patricia-Weisensee.html)
Assistant Professor, Mechanical Engineering & Materials Science
PhD, University of Illinois at Urbana-Champaign

Professor Weisensee’s work focuses on understanding the interplay of fluid dynamics, heat transfer, and liquid-solid interactions of droplets and other multi-phase systems. Practical applications of interest are phase change heat transfer for thermal management, thermal storage, water harvesting, metallic additive manufacturing, and droplet interactions with biological and natural systems.

Chong Zhu (https://physics.wustl.edu/people/chong-zu/)
Assistant Professor, Physics
PhD, Tsinghua University

Professor Zu’s research interests lie at the interface between atomic, molecular, and optical physics; condensed matter physics; and quantum information.

Degree Requirements

Interdisciplinary PhD in Materials Science & Engineering

To earn a PhD degree, students must complete the requirements of the McKelvey School of Engineering, along with program-specific requirements. Courses include the following:

- Four IMSE Core Courses (12 units)
- Two semesters of IMSE 500 First-Year Research Rotation (6 units)
- Three courses (9 units) from a preapproved list of Materials Science & Engineering electives
- A minimum of three graduate-level technical elective courses (9 units) in mathematics or any science or engineering department, to reach a total of at least 36 academic credit units
 - A maximum of 3 units of IMSE 505 Material Science Journal Club will be permitted toward this requirement.
 - Any 400-level courses not included on the preapproved list of Materials Science & Engineering electives must be approved by the Graduate Studies Committee.
 - A maximum of 12 units of 400-level courses may be applied toward the required 36 academic credit units. Undergraduate-only courses (below the 400 level) are generally not permitted and may not be used to fulfill this requirement.
- IMSE 501 IMSE Graduate Seminar every semester of full-time enrollment
- 18 to 36 units of IMSE 600 Doctoral Research (Students must identify an IMSE faculty member willing and able to support their dissertation research on a materials-related topic.)
- Students must maintain a grade-point average of at least 3.0 for all graded courses and have no more than one grade of B- or below in a core course or a Materials Science & Engineering elective.

Additional program requirements include the following:

- Pass the IMSE Qualifying Examination (oral and written components)
- Identify an IMSE graduate program faculty member willing and able to support the student’s dissertation research on a materials-related topic

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMS 5610</td>
<td>Quantitative Materials Science & Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Physics 537</td>
<td>Kinetics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>EECE 502</td>
<td>Advanced Thermodynamics in EECE (or a new thermodynamics course to be offered through MEMS in Fall 2023)</td>
<td>3</td>
</tr>
<tr>
<td>Chem 5620</td>
<td>Solid-State and Materials Chemistry (or Physics 5072 Solid State Physics)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units 12
• Maintain satisfactory research progress on a topic in materials science and engineering, as determined by the dissertation advisor and the mentoring committee
• Successfully complete research ethics training by the end of the third semester
• Successfully complete teaching requirements by the end of the third year:
 • Attend two or more Teaching Center workshops
 • Complete 15 units of Mentored Teaching Experience
• Successfully complete the dissertation proposal and presentation, with approval from the dissertation examination committee
• Successfully complete and defend a PhD dissertation, with final approval from the dissertation examination committee

Failure to meet these requirements will result in dismissal from the program.

Recommended Course Plan

Year 1

Fall Semester (12 credits)
• IMSE First-Year Research Rotation IMSE 500
• IMSE Graduate Seminar (IMSE 501)
• Quantitative Materials Science & Engineering (MEMS 5610)
• Graduate course on advanced thermodynamics of materials (EECE 502 or new MEMS course in development)*
• Elective

* Students entering in Fall 2022 will complete their thermodynamics requirements in Fall 2023. These students should take an additional elective in Fall 2022.

Spring Semester (12 credits)
• IMSE First-Year Research Rotation IMSE 500
• IMSE Graduate Seminar (IMSE 501)
• Kinetics of Materials (Physics 537)
• Solid State Physics (Physics 5072) (if Chem 5620 not taken in Fall) or elective
• Elective

Summer
• Begin dissertation research
• Prepare for IMSE Qualifying Examination (typically taken in August):
 • Written document and oral presentation on research rotation
 • Oral examination on fundamentals from core courses
• Participate in Graduate Student Mentored Teaching Orientation offered through the Teaching Center in August

Years 2 and Beyond

• Fall 2022-entry students only: Complete EECE 502 Advanced Thermodynamics in EECE or new course on thermodynamics of materials to be offered by MEMS in Fall 2023
• Complete remaining electives (discuss with dissertation advisor)
• IMSE Graduate Seminar (IMSE 501)
• Doctoral Research (IMSE 600)
• Teaching requirements (to be completed by the end of the third year):
 • Attend two or more Teaching Center workshops
 • Complete 15 units of Mentored Teaching Experience
• Regular meetings (at least once per year) with the mentoring committee
• Dissertation proposal and presentation (fifth semester)
• Dissertation and oral defense