Medical Physics

The Department of Radiation Oncology at the School of Medicine currently offers three programs for graduate and postgraduate physics students who are interested in exploring pathways to prepare for residency programs as well as for careers in the field of medical physics: the Master of Science in Medical Physics (MSMP) (https://radonc.wustl.edu/education/master-of-science-in-medical-physics/), the new Doctor of Philosophy (PhD) in Medical Physics (https://radonc.wustl.edu/education/doctor-of-philosophy-phd-in-medical-physics/), and the Post-PhD Graduate Certificate in Medical Physics (https://radonc.wustl.edu/education/post-phd-graduate-certificate-in-medical-physics/).

Contacts for Programs

Program Director
Michael Altman, PhD

Associate Program Director
Tiezhi Zhang, PhD

Program Coordinator
Julie Follman, MBA

Degrees & Offerings

- Master of Science in Medical Physics (http://bulletin.wustl.edu/medicine/degrees-offerings/msmp/)
- Doctor of Philosophy (PhD) in Medical Physics (https://radonc.wustl.edu/education/doctor-of-philosophy-phd-in-medical-physics/)
- Post-PhD Graduate Certificate in Medical Physics (http://bulletin.wustl.edu/medicine/degrees-offerings/med-phys-grad-cert/)

Research

Master of Science in Medical Physics

Established in 2020, the MSMP program offers two different pathways to allow students to choose either a thesis option or a clinical option. Students who choose the thesis pathway will be required to complete 6 credits of thesis research, with the option for additional research opportunities over the summer semester as part of the 30-credit requirement. Students who choose the clinical pathway will be required to complete a 1-credit clinical rotation and a 3-credit clinical project, with the option for additional clinical rotations over the summer. Each pathway takes two years to complete.

Doctor of Philosophy (PhD) in Medical Physics

New in 2022, the Doctor of Philosophy (PhD) in Medical Physics program is designed for full-time study with a minimum of 70 credit units required for degree completion. The program is comprised of 34 credit units of didactic course work, which are largely completed over the first two years of the program; this includes 22 credit units of medical physics “core” classes and 12 credit units of elective course work, as well as a minimum of 36 credit units of thesis research. The program commences in the fall semester, and didactic courses will run over traditional 16-week schedules during the fall and spring semesters. During the summer, students will be expected to work on their thesis research projects. Clinical shadowing opportunities will also be available for those who have interest.

Post-PhD Graduate Certificate in Medical Physics

The medical physics division in the Department of Radiation Oncology currently provides research and training opportunities to a large number of PhD researchers in different areas of science and engineering as applied to radiation oncology. The Department of Radiation Oncology established the Post-PhD Graduate Certificate in Medical Physics program in 2017, with the intent of providing a pathway for postdoctoral fellows to enter into clinical physics residencies.

Our post-PhD certificate program focuses on providing students with the medical physics background necessary for future success in medical physics while also offering students the opportunity to perform cutting-edge research in patient-focused areas. Didactics include 18 credits and can be completed over the course of one or two years.

Faculty

Program Director
Michael Altman, PhD
Associate Professor of Radiation Oncology
BA, Physics, University of Chicago, 2002
MS, Physics, Drexel University, 1999
PhD, Medical Physics, University of Chicago, 2010
Medical Physics Residency, Henry Ford Health System, 2012

Associate Program Director
Tiezhi Zhang, PhD (https://radonc.wustl.edu/people/tiezhi-zhang-phd/)
Associate Professor of Radiation Oncology (primary appointment)
BS, Physics, Jilin Medical University, 1994
MS, Physics, Drexel University, 1999
PhD, Medical Physics, University of Wisconsin–Madison, 2004
Instructors

Jose Garcia-Ramirez, MSc (https://radonc.wustl.edu/people/jose-garcia-ramirez-ms/)
Assistant Professor of Radiation Oncology
BS, Physics, University of Puerto Rico, 1995
MS, Medical Radiation Physics, Finch University of Health Sciences (Rosalind Franklin University), 1997

Yao Hao, PhD
Instructor in Radiation Oncology (primary appointment)
BS, Physics, Shanxi University, 2004
MA, Logic, Shanxi University, 2007
PhD, Medical Physics, University of Massachusetts, 2016

Samuel C. Sachs Professor of Electrical Engineering
BS, Electrical Engineering, University of Notre Dame, 1982
MS, Electrical Engineering, University of Notre Dame, 1984
PhD, Electrical Engineering, University of Notre Dame, 1986

Naim Ozturk, PhD
Chief Physicist, Cox Health Springfield
BS, Physics, Bogazici University (Turkey), 1984
MS, Physics, University of Toledo, 1989
PhD, Physics, University of Toledo, 1993
MS, Medical Physics, East Carolina University, 2003

Michael Prusator, PhD
Assistant Professor of Radiation Oncology
BS, Chemistry, University of the Ozarks, 2012
MS, Radiological Sciences, University of Oklahoma, 2014
PhD, Radiological Sciences, University of Oklahoma, 2018

Buck Rogers, PhD (https://radonc.wustl.edu/people/buck-rogers-phd/)
Professor of Radiation Oncology (primary appointment)
Adjunct Professor of Chemistry (courtesy affiliation)
Professor of Radiology
BS, Chemistry, Loyola University Chicago, 1989
MA, Chemistry, Washington University in St. Louis, 1991
PhD, Inorganic Chemistry, Washington University in St. Louis, 1995

David Strait, PhD (https://anthropology.wustl.edu/people/david-strait/)
Professor of Anthropology
BA, Anthropology, Harvard College, 1991
MA, Anthropological Sciences, State University of New York at Stony Brook, 1995
PhD Anthropological Sciences, State University of New York at Stony Brook, 1998

Courses


M91 MedPhys 501 Clinical Imaging Fundamentals
This course will cover the physical principles underlying various imaging modalities used in medicine, including radiography, computed tomography, ultrasound, positron emission tomography and magnetic resonance imaging. Topics to be covered include (1) aspects of X-ray generation for imaging, including X-ray tube construction and imaging geometries; and (2) image-acquisition devices, such as storage phosphor plates, image intensifiers, and various digital imagers. Clinical applications of X-ray imaging, including mammography and angiography, will be reviewed. Advanced imaging systems to be covered include diagnostic computed tomography (CT) scanners and cone-beam CT scanners. Basics of MRI imaging systems will be reviewed, including (1) the physics underlying both commonly used and specialized pulse sequences; and (2) the design and construction of typical scanners. The physics and clinical applications of both ultrasound and PET imaging will also be discussed. Topics to be considered throughout the course include image-quality metrics used to evaluate the performance of any imaging system and how the performance of imaging platforms can be degraded or improved in terms of these metrics. In addition to the didactic component, there will also be hands-on laboratory sessions on ultrasound, cone-beam CT, MRI imaging, radiography, and computed tomography performance testing for various clinical systems. Prerequisites: modern physics and calculus; permission of the program director.
Credit 2 units.

M91 MedPhys 502 Radiological Physics and Dosimetry
This course is designed to construct a theoretical foundation for ionizing radiation dosimetry calculations and measurements in a medical context and to prepare graduate students for proper scientific applications in the field of X-ray imaging and radiation therapy. This course will cover the fundamental concepts of radiation physics, how ionizing radiation interacts with matter, and how the energy that is deposited in the matter can be measured in theory and practice. Prerequisites: calculus and modern physics; permission of the program director. Instructor: Tiezhi Zhang, PhD. Fall.
Credit 3 units.

M91 MedPhys 503 Independent Study
The graduate student will pursue independent laboratory or industrial research during the academic year. Many WUSM faculty have research opportunities for students. Students should reach an agreement with a faculty member who is willing to serve as their supervisor for the objective and scope of the project. The faculty supervisor must be either employed full-time in the Department of Radiation Oncology or affiliated with its Medical Physics Division. The grade for the independent study will be pass/fail. The student may continue to develop their research during a second term and expand the research into either a clinical project or thesis research. Instructor Rao Khan, PhD. Fall and spring.
Credit 1 unit.

M91 MedPhys 503C Clinical Project
Students will complete a clinically focused, hands-on project under the supervision of a faculty mentor. The student will develop a project statement that includes the purpose, overview of proposed methods, expected duration, and required effort to complete the project. The statement must be approved by
M91 MedPhys 503R Phd Research Rotation
The research rotations course is designed to provide graduate students with an opportunity to gain insight into an aspect of the field of medical physics. The goal of the course is to provide introductory experience on a focused project with one or more faculty mentor(s). Graduate students will be matched with a project/mentor based on a number of factors, including student interest in the area of study and availability. Prerequisite: Physics and calculus; Permission of the Program Director. Instructor: Michael B. Altman, PhD, 3 credit hours, Fall and Spring. Credit 3 units.

M91 MedPhys 503T Thesis Research
Students will complete a research project under the supervision of a faculty mentor. Thesis students will develop a thesis proposal, conduct mentored research, and disseminate this research in the form of an oral defense and written thesis. Thesis proposals must be approved by the faculty mentor and program director prior to initiating the thesis research. Prerequisites: Radiological Physics and Dosimetry, Radiation Oncology Physics, Independent Study courses, and permission of the program director. Credit 3 units.

M91 MedPhys 504 Ethics, Professionalism and Current Topics
This course prepares students to critically evaluate ethical, regulatory and professional issues and for leadership in clinical practice and research. The principal goal of this course is to prepare students to recognize ethics and compliance resources in clinical research and the situational factors that give rise to them, to identify ethics and compliance resources, and to foster ethical problem-solving skills. In addition, the course introduces professionalism, core elements, common traits of the medical physics profession, confidentiality, conflict of interest, interpersonal interactions, negotiations and leadership skills. Characteristics of successful leadership are also identified. Interaction with patients, colleagues, vendors, and clinic staff will also be emphasized. Prerequisite: Permission of the program director. Credit 1 unit.

M91 MedPhys 505 Radiobiology
This course is designed to establish a foundation for ionizing radiation interaction with biological tissues. It will cover the fundamental concepts of cell biology, how ionizing radiation interacts with cells, radiation damage and carcinogenesis, and radiation therapy fractionation and related concepts. The effects of ionizing radiation on living cells and organisms -- including the physical, chemical, and physiological basis of radiation cytotoxicity, mutagenicity, and carcinogenesis -- are also covered. Prerequisites: One year each of biology, physics and organic chemistry; permission of the program director. Credit 2 units.

M91 MedPhys 506 Radiation Oncology Physics
This course is designed to build on the concept of radiation dosimetry techniques and bring them into the clinical realm. The students will learn clinical applications of radiation dose measurements as used in radiation therapy for the treatment of cancer. Ionizing-radiation-producing devices such as external beam, brachytherapy, protons and charged particles, imaging modalities, simulation, radiation delivery, treatment verification imaging, quality assurance, motion management, and image-guided techniques will be the major focus. Prerequisites: Radiological Physics and Dosimetry; permission of the program director. Credit 3 units.

M91 MedPhys 521 Radiation Protection and Safety
This class is designed to introduce concepts of radiation protection and safety as well as the biological consequences of human radiation exposure. Protection and safety of the radiation worker and patient as well as detection equipment and shielding analysis will be the main focus. The course will broadly cover regulations and radiological protection in various clinical environments. Prerequisites: one year each of biology, physics and organic chemistry; permission of the program director. Instructor: Rao Khan, PhD. Fall. Credit 2 units.

M91 MedPhys 522 Clinical Rotations
The student will rotate through various areas within the Radiation Therapy Clinic and develop an understanding of the applications of physics in the use of radiation for the treatment of cancers. This will include simulation, quality assurance of various imaging and radiation sources, dose calculation, intensity modulation treatments, radiosurgery, stereotactic body radiotherapy, brachytherapy, radiopharmaceutical therapy, and more. Prerequisites: Radiological Physics and Dosimetry, Radiation Oncology Physics; permission of the program director. Credit 1 unit.

M91 MedPhys 523 Advanced Clinical Medical Physics Laboratory
This course is designed to introduce concepts of radiation protection and safety as well as biological consequences of human radiation exposure. Protection and safety of the radiation worker and patient, as well as detection equipment and shielding analysis, will be main focus. The course will broadly cover regulations and radiological protection in various clinical environments. Prerequisites: One year each of biology, physics and organic chemistry; permission of the program director. Credit 2 units.