Department of Neurology

Website: https://neuro.wustl.edu/education

Research Electives

Neurology Research Electives

During the fourth year, opportunities exist for many varieties of advanced clinical or research experiences.

Beau Ances, MD
Taylor Avenue Building Extension, 2nd Floor
Phone: 314-747-8423

Neuroimaging of neurodegenerative disorders. Students can work in a neuroimaging laboratory that is focused on the translational discovery of neuroimaging biomarkers for neurodegenerative diseases. The laboratory focuses on the pathogenesis of Alzheimer's disease and HIV-associated neurocognitive disorders. We are investigating the effects of neurodegenerative diseases on the brain network level using functional (blood oxygen level dependent imaging, arterial spin labeling), structural (volumetrics, diffusion tensor imaging), and metabolic (PET amyloid and tau) methods. Multiple projects that involve bioengineering, neuroimaging and infectious disease are available, depending on the interest of the student.

Randall Bateman, MD
Biotechnology Center, Room 304
Phone: 314-747-7066

Central nervous system protein metabolism in aging and dementia. This research elective will expose the student to translational research in the study of Alzheimer's disease and other neurodegenerative diseases. The student will participate in multiple areas of the research, including participant recruitment, consent, enrollment and admission to a research hospital unit. Lumbar puncture for cerebrospinal fluid sample collection, blood collection and intravenous labeling methods will be demonstrated and taught. The student will participate in sample analysis, including processing for mass spectrometry quantitation, enzyme-linked immunosorbent assay and Western gel methods. Quantitation, analysis and modeling of the data will be taught in the context of data interpretation and study design.

Anne H. Cross, MD, and Laura Piccio, MD, PhD
McMillan, 3rd Floor
Phone: 314-747-4591 or 314-747-0405

Understanding interactions of the immune system with the central nervous system as it relates to multiple sclerosis and other neuroimmunological disorders. Our goal is to understand how immune cells cross the blood-brain barrier and initiate the cascade of events that leads to the lesions of multiple sclerosis. We are also funded to study the effects of diet and adipokines on neuroinflammation. Depending on the time commitment of the student and their individual interests and goals, they will either assist with ongoing projects or be given a laboratory project on which to work. Projects may involve animal models of multiple sclerosis, cell culture or studies of human samples (cerebrospinal fluid, blood or autopsied specimens). Interested students should contact Dr. Cross (crossa@neuro.wustl.edu) or Dr. Piccio (picciol@neuro.wustl.edu) several weeks in advance before signing up for this research to allow for sufficient planning.

Robert T. Naismith, MD
McMillan, Room 310B
Phone: 314-747-0432

Clinical imaging research in multiple sclerosis. The student will learn about neuroimaging, imaging analyses, data collection, data management and clinical study endpoints in multiple sclerosis. They will observe patient participants undergoing a detailed evaluation of disability measures, such as ambulation, symptom scales, cognition, vision, upper extremity function, and so on. They will witness the entire process of image acquisition, processing, analysis and data extraction. They will have the opportunity to interact with many people who are vital to the research, including research coordinators, imaging technologists, imaging physicists/chemists and specialized research clinicians (i.e., neurocognitive and physical therapy research specialists). The student will assist with hands-on clinical investigative research. They will gain an excellent appreciation of multiple sclerosis, from its pathophysiology within the central nervous system to how it affects the neurological function of individuals. Through detailed and quantitative imaging analysis, the student will become very adept at analyzing brain MRI scans. They will mark and track lesions to determine their effects on clinical function and learn to identify normal-appearing white matter, cortex and gray-matter structures. They will become familiar with Amira Imaging Analysis Software, SPSS Statistical Analysis Software, SIENA Volume Analysis Software and Matlab Imaging Analysis Software.

Steven E. Petersen, PhD
East Building, Room 2108
Phone: 314-362-3319

This lab is interested in brain organization and function, particularly for language, attention and memory. Our main approach to these issues is through functional MRI and large-scale network analysis.
Joel S. Perlmutter, MD
East Building, 2nd Floor
Phone: 314-362-6026

Pathophysiology of movement disorders. The lab is primarily interested in the etiology, pathophysiology and treatment of basal ganglia disorders. We have several studies of Parkinson disease (PD). We investigate mechanisms of action of deep brain stimulation, which is a dramatic new treatment. These studies combine PET, cognitive testing and quantified measures of movement. We also test new drugs that might rescue injured nigrostriatal neurons (a model of PD). For these, we use PET to measure dopamine pathways and also to quantify motor behavior. We also have an active program developing and validating neuroimaging biomarkers for PD and for determining the integrity of the nigrostriatal pathway that includes studies in human and animal models of PD. We have an active program that combines a variety of approaches to developing biomarkers and investigating the pathophysiology of dementia associated with PD. We use PET to measure radioligand binding and sensorimotor processing in dystonia. We developed a new animal model of dystonia to investigate pharmacologic and physiologic changes. We use PET to investigate drug-mediated pathways in the brain and to parse out the effects of selective dopaminergic agonists. We are also working to develop MR-based methods including diffusion tensor imaging and resting-state functional connectivity to investigate the brain mechanisms underlying PD and dystonia.

Brad A. Racette, MD
McMillan, 9th Floor
Phone: 314-362-5291

Our lab is primarily interested in environmental risk factors associated with Parkinson's disease. We use a variety of techniques to study these risk factors, including traditional field epidemiology, in which we evaluate workers exposed to metals in the United States and residents living near a smelter in South Africa; neuroimaging, in which we study the pathophysiology of toxin-mediated parkinsonism; geographic information systems research, in which we associate environmental toxin exposures with the incidence and prevalence of Parkinson's disease in the United States and Finland; and neuropathologic studies, in which we evaluate manganese-exposed workers from South Africa. There are numerous opportunities available for students to be involved with any of these projects. Students will receive some clinical exposure as well to familiarize them with pertinent clinical syndromes.

Marcus E. Raichle, MD
East Building, 2nd Floor
Phone: 314-362-6907

This lab investigates in vivo brain hemodynamic, metabolic and functional studies of human cognition and emotion using cyclotron-produced isotopes and PET as well as fMRI in humans. Refer also to the listing on this page for Steven E. Petersen, PhD.

Gregory Wu, MD, PhD
McMillan, 3rd Floor
Phone: 314-362-3293

Understanding how immune responses are generated that target the central nervous system. Specifically, this lab studies antigen-presenting cell contributions to autoimmune animal models of multiple sclerosis. Our goal is to understand what cellular interactions are critical to the development of immune-mediated demyelination.