Aims) and an initial outline of research methods. The final presentation of specific research questions (along the lines of NIH-style Specific Questions) will involve a fuller presentation of research questions and proposed methods. Feedback, didactic work, and group discussion throughout the semester will include guidance on critical components of the development of a research plan, including how to perform literature searches, formulate testable hypotheses, write critical literature summaries, and design experiments and analyses. The course will meet once a week, with faculty members from different tracks within the Pathway present at each meeting. This will allow students to receive feedback from several perspectives. Prerequisite: Member of CCSN Pathway, permission of instructor. Credit 3 units.

L41 Biol 5648 Coding and Statistical Thinking in the Neurosciences
Students are introduced to scientific programming in Python. Students will learn common programming constructs and how to visualize and analyze data. Coding will be integrated into a statistics curriculum introducing summary statistics, probability distributions, simulation and hypothesis testing, and power analysis for experimental design. Credit 3 units.

L41 Biol 5651 Neural Systems
The course will consist of lectures and discussions of the sensory, motor and integrative systems of the brain and spinal cord, together with a weekly lab. The lectures will present aspects of most neural systems, and will be given by faculty members who have specific expertise on each topic. The discussions will include faculty led group discussions and papers presented and discussed by students. The labs will include human brain dissections, examination of histological slices, physiological recordings, behavioral methods, computational modeling, and functional neural imaging. Credit 4 units.

L41 Biol 5989 Advanced Topics in Neuroscience
This course will expose upper-level and postdoctoral students to advanced topics and methods in neuroscience. The course will rapidly fill gaps in student knowledge in areas that may be relevant to new directions in thesis work or interest areas. Each section of the course will be offered asynchronously, sometimes in coordination with existing journal clubs and other seminars. Each section will meet for two hours per week for three weeks. Sections may start with a didactic component or a review paper, but they will quickly delve into the discussion of primary papers curated by faculty and covering a focused topic. It is expected that papers will cover both historical and current contexts. Some sections will focus on technique; others will be conceptually focused. Each section of the course will be led by a faculty member drawn from the Neuroscience program in an area of their expertise. Objectives include deepening critical thinking, statistical knowledge, experimental design, and technical prowess. Credit 0.5 units.