Aims) and an initial outline of research methods. The final presentation of specific research questions (along the lines of NIH-style Specific
The second presentation will involve a more detailed presentation of the student's general topic of interest and preliminary formulation of research
opportunities to receive constructive feedback on the development and implementation of research aims. The first presentation (towards the beginning of the semester) will involve presentation of the student's thesis proposal or a solid precursor to the thesis proposal. The course will be designed to help facilitate the development of such a research plan through didactic work, class presentations, class discussion, and constructive feedback on written work. The course will begin with a review of written examples of outstanding research proposals, primarily in the form of grant submissions similar to those that the students are expected to develop (i.e., NRSA style proposals, R03 proposals). Review of these proposals will serve as a stimulus to promote discussion about the critical elements of good research proposals and designs in different areas. Each student will be expected to give three presentations throughout the semester that will provide opportunities to receive constructive feedback on the development and implementation of research aims. The first presentation (towards the beginning of the semester) will involve presentation of the student’s general topic of interest and preliminary formulation of research questions. Feedback will emphasize ways to focus and develop the research hypotheses into well-formulated questions and experiments. The second presentation will involve a more detailed presentation of specific research questions (along the lines of NIH-style Specific Aims) and an initial outline of research methods. The final presentation will involve a fuller presentation of research questions and proposed methods. Feedback, didactic work, and group discussion throughout the semester will include guidance on critical components of the development of a research plan, including how to perform literature searches, formulate testable hypotheses, write critical literature summaries, and design experiments and analyses. The course will meet once a week, with faculty members from different tracks within the Pathway present at each meeting. This will allow students to receive feedback from several perspectives. Prerequisite: Member of CCSN Pathway, permission of instructor. Credit 3 units.

L41 Biol 5648 Coding and Statistical Thinking in the Neurosciences
Students are introduced to scientific programming in Python. Students will learn common programming constructs and how to visualize and analyze data. Coding will be integrated into a statistics curriculum introducing summary statistics, probability distributions, simulation and hypothesis testing, and power analysis for experimental design. Credit 3 units.

L41 Biol 5651 Neural Systems
The course will consist of lectures and discussions of the sensory, motor and integrative systems of the brain and spinal cord, together with a weekly lab. The lectures will present aspects of most neural systems, and will be given by faculty members who have specific expertise on each topic. The discussions will include faculty led group discussions and papers presented and discussed by students. The labs will include human brain dissections, examination of histological slides, physiological recordings, behavioral methods, computational modeling, and functional neural imaging. Credit 4 units.

M05 Neurosci 810 Advanced Dissection (Non-Clinical Elective)
Students will perform detailed dissections on a discrete region of the body of their choosing - i.e. head/neck, thorax, abdomen, pelvic cavity, or limbs. Students will compile a list of personal learning objectives with the approval of the course director(s). A minimum of 30 hours of self-paced individual dissection is required and may include practice of surgical approaches, and/or study of cross-sectional anatomy and medical imaging. Available to medical students only.

L41 Biol 5571 Cellular Neurobiology
This course will present a fully integrated overview of nerve cell structure, function and development at the molecular and cellular level. Broad topics to be covered include gene structure and regulation in the nervous system, quantitative analysis of voltage- and chemically-gated ion channels, presynaptic and postsynaptic mechanisms of chemical neurotransmission, sensory transduction, neurogenesis and migration, axon guidance and synapse formation. Two lectures plus one hour of discussion per week for 14 weeks. There will be three exams, as well as homework problems and summaries of discussion papers. Prerequisites: graduate standing or permission of the instructor. Credit 6 units.

L41 Biol 5622 Cognitive, Computational, and Systems Neuroscience Project Building
The goal of this course is to help students in the CCSN Pathway develop the critical thinking skills necessary to develop and implement high quality, interdisciplinary research projects. Throughout the course of the semester, each student will develop a research plan in their chosen area of interest. The plan will be developed in consultation with at least two faculty members (from at least two different subdisciplines within the pathway) as well as the other students and faculty participating in the course. The culmination of this course will be for each student to produce an NIH-style grant proposal on the research project of their choosing. For most students, this will serve either as their thesis proposal or a solid precursor to the thesis proposal. The course will be designed to help facilitate the development of such a research plan through didactic work, class presentations, class discussion, and constructive feedback on written work. The course will begin with a review of written examples of outstanding research proposals, primarily in the form of grant submissions similar to those that the students are expected to develop (i.e., NRSA style proposals, R03 proposals). Review of these proposals will serve as a stimulus to promote discussion about the critical elements of good research proposals and designs in different areas. Each student will be expected to give three presentations throughout the semester that will provide opportunities to receive constructive feedback on the development and implementation of research aims. The first presentation (towards the beginning of the semester) will involve presentation of the student’s general topic of interest and preliminary formulation of research questions. Feedback will emphasize ways to focus and develop the research hypotheses into well-formulated questions and experiments. The second presentation will involve a more detailed presentation of specific research questions (along the lines of NIH-style Specific Aims) and an initial outline of research methods. The final presentation