Research Electives

Neurosurgery Research Electives

During the fourth year, opportunities exist for many varieties of advanced clinical or research experiences.

Michael R. Chicoine, MD
Phone: 314-747-6143

Our focus is on outcomes analysis for adult patients with brain tumors. Current clinical studies focus on the outcomes of patients with benign and malignant brain tumors utilizing a prospective brain tumor database. Particular emphasis includes the impact of intraoperative MRI (iMRI) on outcomes for patients with brain tumors and other diseases. We are establishing a multicenter database pooling data from multiple iMRI centers in North America.

Ian G. Dorward, MD
Phone: 314-747-6142

Our research interests include outcomes analysis in spinal reconstruction surgery, including the impact of age, obesity, and other clinical variables on costs, complications, and patient satisfaction. Another area of interest is the evaluation of novel techniques in spinal deformity correction and minimally invasive spinal surgery. Additional work focuses on etiologic factors of spinal deformity in both adolescents and adults.

Gavin P. Dunn, MD, PhD
Phone: 314-747-6141

Our studies focus on the examination of molecular mechanisms in the endothelial cells and smooth muscle cells in the intracerebral microcirculation and the contribution of glial cells to their impairment after hypoxia/reoxygenation. In vitro techniques for studying isolated perfused microvessels are used to examine questions centered on endothelial smooth muscle and glial cell integration of cerebral blood flow responses.

Ammar H. Hawasli, MD, PhD
Phone: 314-747-6144

Our functional spinal neurosurgery research laboratory aims to understand the physiological and pathophysiological relationships between the spine and the brain. We study brain physiology and connectivity in spinal disorder patients, leveraging expertise in both spinal neurosurgery and brain physiology and a network of high-level collaborators at Washington University School of Medicine.

Albert H. Kim, MD, PhD
Phone: 314-747-6141

I have laboratory and clinical research interests in the cancer stem cell state and the genetics of glioblastoma using human tumor specimens. I additionally have clinical projects examining patient outcomes for two common types of brain tumors: meningiomas and pituitary tumors.

Eric C. Leuthardt, MD
Phone: 314-747-6146

Our lab is pursuing research in the areas of neuroprosthetics, brain-computer interfaces (BCIs), and advanced imaging modalities. These include opportunities in basic neurophysiology, engineering for BCIs, and functional MRI imaging research for applications toward brain tumors.

David D. Limbrick, MD, PhD
Phone: 314-454-4630

Our lab investigates clinical and translational research into newborn brain injuries, including posthemorrhagic hydrocephalus. Our main research areas include cerebrospinal fluid protein markers of disease, MRI diffusion tensor imaging, and prospective clinical trials. In addition, multi-institutional clinical research opportunities exist for syringomyelia associated with Chiari I malformation.

T.S. Park, MD
Phone: 314-454-2810

Our ongoing projects include outcome studies of selective dorsal rhizotomies for the treatment of spastic cerebral palsy in children and brachial plexus repair after birth injury. We are also involved in a multicenter outcome study of syringomyelia associated with Chiari I malformation in children.

Wilson Z. Ray, MD
Phone: 314-362-3114

Clinical and translational research on peripheral nerve and spinal cord injuries; lab-based opportunities for longer research electives investigating peripheral nerve regeneration and peripheral neuroprosthetics incorporating transient electronics.

Keith M. Rich, MD
Phone: 314-747-6142

Research on neuronal and glioma cellular apoptosis after treatment with DNA-damaging agents; techniques include growing human brain tumor cells in culture, bioassay for apoptosis with fluorescent staining, protein immunoblotting, and PCR.

Matthew Smyth, MD
Phone: 314-454-4454
Clinical outcomes studies for pediatric epilepsy surgery and craniosynostosis surgery, basic and translational research in advanced clinical imaging, and translational research in the development of focal brain cooling devices for the treatment of epilepsy.

Gregory J. Zipfel, MD
Phone: 314-747-6141

My NIH-funded research program involves both basic and clinical research efforts focused on two main conditions: (1) cerebral amyloid angiopathy and its contribution to ischemic stroke, vascular dementia, and Alzheimer's disease; and (2) vasospasm-induced delayed cerebral ischemia and long-term cognitive deficits after aneurysmal subarachnoid hemorrhage. My work includes the following: basic experimental methods, including cell culture and ex vivo vascular techniques; in vivo studies utilizing animal models of ischemic stroke and subarachnoid hemorrhage and live animal epifluorescent and confocal imaging; and phase I clinical trials in patients.