Bachelor of Science in Electrical Engineering

The Bachelor of Science in Electrical Engineering (BSEE) degree program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org).

Program Educational Objectives

Within a few years of graduation, BSEE degree program recipients are expected to do the following:

- Our graduates will be engaged as practicing professionals in a broad range of careers in industry or government or will pursue advanced degrees in academic graduate education in engineering or a related field.
- Our graduates will function effectively as members of teams demonstrating sensitivity to professional and societal contexts, integrity and versatility.

Student Outcomes

Graduates of the BSEE program are expected to know or have the following by the time of graduation:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. An ability to communicate effectively with a range of audiences
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies

BSEE Degree Requirements

To obtain the BSEE degree, students must complete a minimum of 120 units consistent with the residency and other applicable requirements of Washington University and the McKelvey School of Engineering (http://bulletin.wustl.edu/undergrad/engineering/requirements/) and subject to the program requirements below. All courses below must be taken for a letter grade unless otherwise specified.

1. Common Studies program of the McKelvey School of Engineering: This includes courses in engineering, mathematics, chemistry, humanities, social sciences and technical writing. The required chemistry sequence is Chem 111A–Chem 151, although Chem 111A–Chem 112A–Chem 151–Chem 152 is recommended. Chem 111A is preferred, but Chem 105 will be allowed. Humanities and social sciences courses may be taken on a pass/fail basis.
2. Engr 4501 Engineering Ethics and Sustainability (1 unit)
3. Two of the following three computer science courses: CSE 131 Introduction to Computer Science (3 units), CSE 132 Introduction to Computer Engineering (3 units) or CSE 247 Data Structures and Algorithms (3 units)
4. Engineering and science breadth requirements: 9 units in engineering or science outside of electrical engineering. These units must be taken in the following areas: biomedical engineering, chemical engineering, computer science and engineering, mechanical engineering, systems science and engineering, economics, mathematics, physics, biology, chemistry, earth and planetary sciences, and pre-medicine. These units must be at the 200 level or higher and cannot be used to satisfy the Common Studies requirements (item 1 above) or the computer science requirement (item 3 above). Courses in other fields can be arranged with special departmental approval. Engineering and science breadth courses may be taken on a pass/fail basis. Examples of engineering and science courses are MEMS 255 Dynamics, EECE 210 Introduction to Environmental Engineering, CSE 247 Data Structures and Algorithms, Engr 324 From Concept to Market: The Business of Engineering, BME 240 Biomechanics, Physics 217 Introduction to Quantum Physics, Physics 318 Introduction to Quantum Physics II, MEMS 253 Statics and Mechanics of Materials, Biol 2960 Principles of Biology I, Biol 2970 Principles of Biology II, Chem 261 Organic Chemistry I with Lab and Chem 262 Organic Chemistry II with Lab.
5. 35 units of required ESE courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESE 105</td>
<td>Introduction to Electrical and Systems Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ESE 205</td>
<td>Introduction to Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>ESE 230</td>
<td>Introduction to Electrical and Electronic Circuits</td>
<td>4</td>
</tr>
</tbody>
</table>
ESE 232 Introduction to Electronic Circuits 3
ESE 260 Introduction to Digital Logic and Computer Design 3
ESE 318 Engineering Mathematics A 3
ESE 319 Engineering Mathematics B 3
ESE 326 Probability and Statistics for Engineering 3
ESE 330 Engineering Electromagnetics Principles 3
ESE 351 Signals and Systems 3
ESE 498 Electrical Engineering Capstone Design Projects 3

Total Units 35

6. Two upper-level laboratory courses (6 units) from the following list: ESE 3301, ESE 331, ESE 435, ESE 4480, ESE 4481, ESE 465 and ESE 488. The selection must contain at least one course from ESE 331, ESE 435, ESE 465 and ESE 488.

7. 15 units of elective ESE courses in electrical engineering subjects from the following list: ESE 330–399, ESE 400, ESE 405, ESE 415, ESE 425, ESE 429-497 and ESE 503–589. The selection must contain at least two courses from ESE 431, ESE 436, ESE 438, ESE 441, ESE 461, ESE 471 and ESE 482.

8. The entire course sequence for the BSEE containing engineering topics of at least 45 units. The numbers of engineering topic units assigned to undergraduate courses in the McKelvey School of Engineering vary from none (0) to the number of credits given to the course. For the precise number for each course, please refer to the table of Topics Units — Engineering Courses provided by Engineering Undergraduate Student Services (http://engineering.wustl.edu/current-students/student-services/Pages/default.aspx). Courses taken on a pass/fail basis may be used for engineering topics units.

9. Limitations. No more than 3 credits of 500-level courses may be applied toward the EE elective requirement (item 7 above).

10. Limitations. No more than 6 units of the combined units of ESE 400 Independent Study and ESE 497 Undergraduate Research (including ESE 497A and ESE 497B) may be applied toward the EE elective requirement (item 7 above) of the BSEE degree. The balance of combined units, if there are any left, are allowed as free electives to satisfy the requirement for the total number of units.

For more information about the BS in Electrical Engineering curriculum (https://ese.wustl.edu/undergraduate/degreeprogram/Pages/electrical-engineering.aspx), please visit the ESE website.